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1. Introduction

In [IX15], Isaksen–Xu produce the Adams differential d2(D1) = h2
0h3g2, completing the

identification of the stable 51 and 52-stems. Their proof uses motivic homotopy theory in an
essential way, and is notable for the fact that no non-motivic proof was known at the time.
A non-motivic and completely automated proof should now follow from Chua’s algorithmic
computation of Adams d2-differentials [Chu21], building on Baues–Jibladze’s work on the
secondary Steenrod algebra [BJ04].

This note gives another proof by analyzing how these elements arise in the unstable Adams
spectral sequence. The proof is elementary, in the sense that all the methods were available
in the 70s and the necessary Ext computations were available in the 90s.

2. Preliminaries

Write E(Sn) for the unstable Adams spectral sequence for Sn. We name classes in
the unstable Adams spectral sequence by how they appear in a Curtis table. See [Cur71,
CGMM87] for background.

2.1. Lemma. In a Curtis table, we have
D1 = λ4λ7λ11λ15λ15, h2

0h3g2 = λ4λ6λ9λ11λ7λ7λ7.

Proof. That D1 = λ4λ7λ11λ15λ15 is given in [Tan94]. That h2
0h3g2 = λ4λ6λ9λ11λ7λ7λ7 may

be read off [CGMM87], as this is the only nonzero class in its degree. □

Note especially that these classes have the same initial. Consider the map

H : E1(S5) → E1(S9), H(λuλI) =
{

λI u = 4
0 otherwise

of spectral sequences, converging to the Hopf map H : ΩS5 → ΩS9.

2.2. Lemma. In a Curtis table, we have
λ7λ11λ15λ15 = h3c2, λ6λ9λ11λ7λ7λ7 = h0h2g2.

Proof. These are the only nonzero classes in their respective degrees, so the lemma may be
read off [CGMM87]. □

2.3. Lemma. There is an Adams differential d2(h3c2) = h0h2g2.

Proof. Barratt–Mahowald–Tangora [BMT70] produce an Adams differential d2(c2) = h0f1.
It follows that d2(h3c2) = h0h3f1, so it suffices to show h3f1 = h2g2. This is obtained by
applying Sq0 to the relation h2f0 = h1g in the 21-stem. □
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3. The proof

3.1. Theorem. There is an Adams differential d2(D1) = h2
0h3g2.

Proof. The classes D1 and h2
0h3g2 desuspend to λ4λ7λ11λ15λ15 and λ4λ6λ9λ11λ7λ7λ7 in

E2(S5) by Lemma 2.1. Moreover, we may read off [CGMM87] that λ4λ6λ9λ11λ7λ7λ7 is the
only nonzero class in its degree in E2(S5). It follows that

d2(λ4λ7λ11λ15λ15) = α · λ4λ6λ9λ11λ7λ7λ7 (1)
in E2(S5) for some α ∈ F2. We then have

d2(λ7λ11λ15λ15) = d2(H(λ4λ7λ11λ15λ15)) = H(d2(λ4λ7λ11λ15λ15))
= H(α · λ4λ6λ9λ11λ7λ7λ7) = α · λ6λ9λ11λ7λ7λ7

in E2(S9). By Lemma 2.2, this suspends to
d2(h3c2) = α · h0h2g2

in the stable Adams spectral sequence, and so α = 1 by Lemma 2.3. Thus Eq. (1) suspends
to d2(D1) = h2

0h3g2 as claimed. □
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