
THE ALGEBRAIC TRANSFINITE (TRANSFINITE ALGEBRAIC?)
ATIYAH–HIRZEBRUCH SPECTRAL SEQUENCE

WILLIAM BALDERRAMA

Abstract. We describe the Curtis algorithm for computing the E2-page of the Adams
spectral sequences for the spectra L(k)n. This note is companion to the file goodwillie-
curtis-table.txt, which contains the output of this algorithm through stem 48.

0.1. Sequences. Say that a sequence J = (j1, . . . , jk) is CU if js > 2js+1 and js ≥ 1 for
each s. Write |J | = k for the length of such a sequence, e(J) = jk for its last term, and
||J || = j1 + · · ·+ jk for the sum of its terms. Define an ordering on CU sequences by declaring
J < J ′ if jk < j′k, or else jk = j′k and jk−1 < j′k−1, and so forth. Say that a sequence
I = (i1, . . . , il) is admissible if 2it ≥ it+1 and it ≥ 0 for each t. Define an ordering on
admissible sequences by I < I ′ if i1 < i′1, or else i1 = i′1 and i2 < i′2, and so forth.

0.2. The TAHSS. We work at the prime 2. The Goodwillie spectral sequence (GSS) for Sn
is a spectral sequence of signature

E1 =
⊕
k≥0

πtL(k)n ⇒ πut+n−k(Sn),

where L(k)n are certain spectra. Here, we write π∗ for stable homotopy groups, and πu∗ for
unstable homotopy groups. To understand the GSS, one must first understand something
about L(k)n. In [Beh12], Behrens develops a method for computing π∗L(k)n, the transfinite
Atiyah–Hirzebruch spectral sequence (TAHSS), which goes as follows.

There are suspension maps L(k)n → L(k)m+1, and we define
L(k)mn = Fib (L(k)n → L(k)m+1) .

There is then a filtration
· · · → L(k)mn → L(k)m+1

n → L(k)n,
with filtration quotients described by cofiber sequences

L(k)m−1
n L(k)mn ΣmL(k − 1)2m+1. (1)

The spectrum L(k−1)2m+1 itself has a filtration with filtration quotients built from L(k−2)∗,
and so forth. As L(0)t = S, altogether these give rise to a transfinite spectral sequence⊕

j1,...,jk
js>2js+1, jk≥n

πtS
j1+···+jk ⇒ πtL(k)n,
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which we call the TAHSS for L(k)n. Given a sequence J , write [J ] for the generator of the
summand corresponding to J . We can then rewrite the TAHSS for L(k)n as

π∗S{[J ] : J CU, e(J) ≥ n} ⇒
⊕
k≥0

π∗L(k)n, |[J ]| = ||J ||.

We point out two benefits of this approach. First, the TAHSS for L(k)n is determined by
the TAHSS for L(k) = L(k)1, allowing for a computation which is uniform in n. Second,
differentials in the TAHSS for L(k) are in bijective correspondence with a specific subset of
the differentials in the TAHSS for L(k + 1), allowing for a computation which is inductive in
k.

0.3. The ATAHSS. There is a third benefit. Differentials in the TAHSS for L(k) are
governed by the structure of attaching maps in the given cell structure of L(k). A great
number of these are detected in homology. This is one of the main techniques of [Beh12]. Let

L(k)n = H∗L(k)n, L(k)mn = H∗L(k)mn .
As before, when n = 1 we omit it from the notation. We then have

L(k)mn = F2{Q̄J : J CU, |J | = k, n ≤ e(J) ≤ m}, |Q̄J | = ||J ||, 1

and the cofiber sequences of Eq. (1) induce short exact sequences on homology, with maps
given by

L(k)m−1
n → L(k)mn , Q̄J 7→ Q̄J

and

L(k)mn → L(k − 1)2m+1, Q̄j1 · · · Q̄jk 7→

{
Q̄j1 · · · Q̄jk−1 jk = m;
0 jk 6= m.

Let A denote the dual Steenrod algebra, and write
Ext(k)mn = ExtA(F2, H∗L(k)mn ).

When n = 1, we omit it; when m =∞, we omit it; and we also abbreviate Ext = Ext(0) =
ExtA(F2,F2). The above inductive filtration of L(k)n gives rise to the algebraic transfinite
Atiyah–Hirzebruch spectral sequence (ATAHSS)

Ext{Q̄J : J CU, n ≤ e(J)} ⇒
⊕
k≥0

Ext(k)n.

All of these ATAHSSs are determined by the ATAHSS in the case n = 1. More precisely,
there is a suspension map L(k)→ L(k)n inducing a surjection

E : L(k)→ L(k)n, E(Q̄J) =
{
Q̄J e(J) ≥ n;
0 e(J) < n.

This passes to a map of ATAHSSs which is a surjection on the E1 page, and all differentials
in the ATAHSS for Ext(k)n lift to differentials in the ATAHSS for Ext(k). So we focus on
the latter. These fit into a square

Ext{Q̄J : J CU} π∗S{[J ] : J CU}

⊕
k≥0 Ext(k)

⊕
k≥0 π∗L(k)

ASS

ATAHSS TAHSS

ASS

,

1Our Q̄J is really Behrens’ [J ].
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where the horizontal spectral sequences are Adams spectral sequences. This diagram of
spectral sequence should “commute” in some suitable sense, and differentials in the ATAHSS
heuristically correspond to differentials in the TAHSS which are detected in homology. The
k = 1 summand has L(1) = P∞1 , and this approach to understanding π∗P∞1 goes back to
Mahowald [Mah67].

0.4. The lambda complex. Let L =
⊕

k≥0 L(k), and define
Sqr∗ : L→ L

by asking that

Q̄rQ̄s =
∑

0≤l≤r−s−2

(
2s− r + 1 + 2l

l

)
Q̄2s+1+lQ̄r−s−1−l if r ≤ 2s, otherwise Q̄rQ̄s

Sqr∗Q̄n =
∑

0≤j≤r/2

(
n− r
r − 2j

)
Q̄n−r+jSqj∗

Sqr∗(1) =
{

1 r = 0
0 r 6= 0

.

The interpretation is that to compute Sqr∗(Q̄J), one uses the first two relations to write
Sqr∗(Q̄J) =

∑
α Q̄

JαSqrα∗ with Jα CU, then throws out all terms with rα 6= 0.
Now let Λ denote the mod 2 lambda algebra. This is the differential graded algebra

generated by symbols λr for r ≥ 0, subject to

λsλ2s+r+1 =
∑

0≤i<r/2

(
r − 1− i

i

)
λr+s−iλ2s+i+1, δ(λn) =

∑
1≤i≤n/2

(
n− i
i

)
λn−iλi−1,

and with basis
Λ = F2{λI : I admissible}.

The lambda complex for L is the differential graded right Λ-module L⊗ Λ, with differential

δ(Q̄J ⊗ 1) =
∑
r≥1

Sqr∗(Q̄J)⊗ λr−1.

This satisfies
H∗(L(k)⊗ Λ) ∼= Ext(k).

In particular, H∗(Λ) ∼= Ext.

0.5. The Curtis algorithm. Note that L⊗ Λ has basis consisting of Q̄JλI where J is CU
and I is admissible. Define an ordering on this basis by declaring

Q̄JλI < Q̄J
′
λI′ if J < J ′ or J = J ′ and I < I ′.

0.5.1. Definition. Say that Q̄JλI tags Q̄J′λI′ , denoted Q̄J′λI′ ← Q̄JλI , if Q̄JλI is minimal
among basis elements for which there exists some p, q ∈ L⊗ Λ with leading terms Q̄JλI and
Q̄J
′
λI′ and satisfying δ(p) = q. /

For now, let us motivate this relation by noting the following.

0.5.2. Proposition.
⊕

k≥0 Ext(k) has a basis indexed by those elements Q̄JλI which do
not participate in a tag. �
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There is a standard algorithm for computing this tag relation. First, to simplify notation,
note that the tag relation may be defined whenever one has a map between vector spaces
over F2 with specified well-ordered bases. Our basis for L⊗ Λ is in fact not well-ordered,
but the tag relation is local, and L⊗ Λ is locally finite-dimensional, so there is no issue.

In general, fix a map f : F2{x1, . . .} → F2{y1, . . .}. Let k ≥ 1, and suppose that for all
i < k we have determined what xi tags, if anything. We then “process” xk.

An element p ∈ F2{x1, . . .} with leading term xk is processed as follows. If d(p) = 0, then
we add xk to our listing of basis elements which do not tag anything, and move on to xk+1.
So suppose d(p) = q 6= 0, and let yl be the leading term of q. If yl ← xi for some i < k, then
we process p+ xi. Otherwise, we add yl ← xk to our list of tags, and move on to xk+1.

Call this the basic homology algorithm. The basic homology algorithm is simple, but L⊗Λ
is far too large for it to be useful directly.

Consider the classical case of just Λ. This is filtered by subcomplexes
Λ(u) = F2{λI : I = (i1, . . . , in) admissible, i1 < u},

which fit into short exact sequences
0→ Λ(u)→ Λ(u+ 1)→ Λ(2u+ 1)→ 0,

where the first map is the inclusion and the second map is given by

λi1 · · ·λin 7→

{
λi2 · · ·λin i1 = u;
0 i1 6= u.

These maps are compatible with the ordering of basis elements, and so one obtains the
following propagation rule: λI′ ← λI if and only if λuλI′ ← λuλI , provided λuλI and λuλI′
are admissible. The Curtis table is the listing of tags λI′ ← λI such that I ′ and I have
distinct initial terms, together with all basis elements not appearing in a tag. This table is
now small enough to be understandable, and the propagation rule allows one to read off the
entire tag relation from the Curtis table.

A Curtis algorithm is any refinement of the basic homology algorithm which takes into
account at least this propagation rule. One may adapt this story to L⊗ Λ, using the short
exact sequences induced by Eq. (1). This yields the following propagation rules.

0.5.3. Proposition. The following hold.
(1) Q̄JλI ← Q̄J

′
λI′ ⇔ Q̄JQ̄uλI ← Q̄J

′
Q̄uλI′ , provided Q̄JQ̄u and Q̄J′Q̄u are CU.

(2) In particular, Q̄JλI′ ← Q̄JλI if and only if λI′ ← λI′ in the classical Curtis table. �

Define the Goodwillie Curtis table to be the classical Curtis table, together with the listing
of all tags Q̄JλI ← Q̄J

′
λI′ with e(J) 6= e(J ′), as well as all additional basis elements not

appearing in a tag. This table should be small enough to be understandable, and the above
discussion explains how one may read off the entire tag relation from the Goodwillie Curtis
table.

Moreover, the basic homology algorithm for H∗(L⊗ Λ) may be augmented by the above
propagation rules to yield an algorithm for computing the tag relation for L ⊗ Λ which
should be effective, at least in a range. In short, we may take as input a classical Curtis
table. Once again we process the elements Q̄JλI in some suitable increasing order, only
now with at least the following shortcuts. First, by (2), we need only consider elements
Q̄JλI such that λI does not appear in a tag in the classical Curtis table, i.e. such that λI
corresponds to an element of Ext. Second, by (1), if we already know Q̄J

′
λI′ ← Q̄JλI , then

we need not process any basis element of the form Q̄JQ̄KλI such that Q̄J′Q̄K is CU.
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Finally we come to the real significance of the Goodwillie Curtis table. The classical
Curtis table is more than just a way of packaging a computation of H∗(Λ): it also contains
within it a computation of each H∗(Λ(u)), as well as information about the differentials in
the spectral sequence associated to the filtration Λ ∼= colimu→∞ Λ(u). Once again, the same
story may be carried out for L⊗ Λ.

Note that Proposition 0.5.3 implies that if Q̄J′λI′ ← Q̄JλI with J 6= J ′, then λI′ and λI
do not appear in a tag in the classical Curtis table, and therefore correspond to elements of
Ext. The relation between tags and spectral sequences in our context yields the following.

0.5.4. Theorem. The following hold.
(1) There is a basis for Ext(k)mn indexed by those Q̄JλI ∈ L ⊗ Λ with |J | = k and

n ≤ e(J) ≤ m, and for which there is no tag of the form Q̄J
′
λI′ ← Q̄JλI or

Q̄JλI ← Q̄J
′
λI′ with n ≤ e(J ′) ≤ m.

(2) Tags Q̄J′λI′ ← Q̄JλI with J ′ 6= J , thus with λI′ and λI associated to elements of
Ext, are in correspondence with differentials d(Q̄J′λI′) = Q̄JλI in the ATAHSS. �

Thus the Goodwillie Curtis table contains exactly the data of the ATAHSS for
⊕

k≥0 Ext(k).
Such a table is contained in the accompanying goodwillie-curtis-table.txt. The k = 1 portion
of this table was scraped from [WX16] instead of recomputed.
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