\mathbb{F}_p -SYNTHETIC *p*-PROFINITE SPACES

WILLIAM BALDERRAMA

Fix a positive prime p and let $\operatorname{Gem}_p \subseteq \operatorname{Gpd}_{\infty}$ be the full subcategory spanned by finite products of the Eilenberg–MacLane spaces $K(\mathbb{F}_p, n)$ for $n \ge 0$. In [Bal21, Example 1.3.9], I observed that $\operatorname{Gem}_p^{\operatorname{op}}$ is a finitary loop theory and asserted that $\operatorname{Model}_{\operatorname{Gem}_p^{\operatorname{op}}}^{\operatorname{op}}$ is a reasonable category of \mathbb{F}_p -synthetic p-profinite spaces, but did not include a proof of any of my claims, in particular of the identification of the special and generic fibers. A few people have asked about this, so this note fills in some of the details.

We begin by identifying the special fiber. Write $\operatorname{Ring}_{\mathcal{U}}^{\heartsuit}$ for the category of unstable rings over the Steenrod algebra.

0.1. **Proposition.** There is an equivalence $\operatorname{Model}_{\operatorname{Gem}_n^{\operatorname{op}}}^{\heartsuit} \simeq \operatorname{Ring}_{\mathfrak{U}}^{\heartsuit}$.

Proof. In a sense, this is just the definition of a \mathcal{U} -ring. By definition, a \mathcal{U} -ring is a graded set together with various zero-ary, unary, and binary operations, all subject to certain universally quantified axioms. In other words, \mathcal{U} -rings are models for a multisorted algebraic theory, and thus $\operatorname{Ring}_{\mathcal{U}}^{\heartsuit} \simeq \operatorname{Model}_{\operatorname{Ring}_{\mathcal{U}}^{\operatorname{Gree}}}^{\heartsuit}$.

As the cohomology of any space is naturally a U-ring, cohomology defines a functor

$$H^*(-;\mathbb{F}_p)\colon \operatorname{Gem}_p^{\operatorname{op}} \to \operatorname{Ring}_{\mathcal{U}}.$$
 (1)

The axioms of a \mathcal{U} -ring are cooked up precisely so that Cartan's computation of the cohomology of Eilenberg–MacLane spaces proves that $H^*K(\mathbb{F}_p, n)$ is the free \mathcal{U} -ring on a generator in cohomological degree n, and this can be upgraded to show that Eq. (1) restricts to an equivalence h $\operatorname{Gem}_p^{\operatorname{op}} \simeq \operatorname{Ring}_{\mathcal{U}}^{\operatorname{free}}$. Thus

$$\operatorname{\mathcal{R}ing}_{\operatorname{\mathcal{U}}}^{\bigtriangledown}\simeq\operatorname{\mathcal{M}odel}_{\operatorname{\mathcal{R}ing}_{\operatorname{\mathcal{U}}}^{\operatorname{free}}}^{\heartsuit}\simeq\operatorname{\mathcal{M}odel}_{\operatorname{\mathcal{G}em}_{p}^{\operatorname{op}}}^{\bigtriangledown}$$

as claimed.

A little more work is required to identify the generic fiber. It is plausible this could be done directly, but the approach I will give instead goes through a synthetic version of Mandell's p-adic homotopy theory [Man01, Lur11] (see [Lur07] for a very readable exposition).

0.2. Lemma. Let \mathcal{P} and \mathcal{P}' be loop theories, and let $f: \mathcal{P} \to Model_{\mathcal{P}'}^{\Omega}$ be a functor. Suppose that the induced functor $\overline{f}_{l}: Model_{h\mathcal{P}} \to Model_{h\mathcal{P}'}$ is fully faithful and preserves finite limits.¹ Then $f_{l}: Model_{\mathcal{P}} \to Model_{\mathcal{P}'}$ is fully faithful and preserves loop models.

Proof. We first verify that $f_!$ is fully faithful. Fix $X, Y \in Model_{\mathcal{P}}$, and consider the map $\operatorname{Map}_{\mathcal{P}}(X, Y) \to \operatorname{Map}_{\mathcal{P}'}(f_!X, f_!Y)$. It is possible to show that $f_! \colon Model_{\mathcal{P}} \to Model_{\mathcal{P}'}$ is, in a suitably precise sense, compatible with the construction of derived Postnikov towers in the

Date: May 11, 2024.

¹Here I write $\overline{f}_{!}$ for the derived functor, denoted $\mathbb{L}\overline{f}$ in [Bal21].

WILLIAM BALDERRAMA

sense of [Bal21, Section 5.4],² and so by induction up the derived Postnikov tower of Y it suffices to verify that the induced maps

$$\operatorname{Map}_{h\mathcal{P}}(\tau_! X, B^{n+1}_{\tau_! Y} \tau_! Y_{S^n}) \to \operatorname{Map}_{h\mathcal{P}'}(\tau_! f_! X, B^{n+1}_{\tau_! f_! Y} \tau_! f_! Y_{S^n})$$
(2)

on layers are equivalences. As $\overline{f}_{!}$ preserves geometric realizations and finite limits, we can identify

$$B^{n+1}_{\tau_!f_!Y}\tau_!f_!Y_{S^n}\simeq B^{n+1}_{\overline{f}_!\tau_!Y}\overline{f}_!\tau_!Y_{S^n}\simeq \overline{f}_!B^{n+1}_{\tau_!Y}\tau_!Y_{S^n},$$

and Eq. (2) is just induced by functoriality of $\overline{f}_{!}: Model_{h\mathcal{P}} \to Model_{h\mathcal{P}'}$. As $\overline{f}_{!}$ is fully faithful, it is thus an equivalence as claimed.

We next verify that $f_!$ preserves loop models. Let $X \in Model_{\mathcal{P}}^{\Omega}$, so that wish to prove $f_!X \in Model_{\mathcal{P}'}^{\Omega}$. By [Bal21, Corollary 3.2.2], it is equivalent to show that $\tau_! f_!(X)$ is 0-truncated. As X is itself a loop model, we can identify

$$\tau_! f_! X \simeq \overline{f}_! \tau_! X \simeq \overline{f}_! (\pi_0 X),$$

so it suffices to verify that \overline{f}_1 preserves 0-truncated objects. This follows from the assumption that \overline{f}_1 preserves finite limits [Lur17, Proposition 5.5.6.16].

Now let $\kappa = \overline{\mathbb{F}}_p$, and write $\operatorname{CAlg}_{\kappa}$ for the category of \mathbb{E}_{∞} rings over κ and $c: \operatorname{Gem}_p^{\operatorname{op}} \to \operatorname{CAlg}_{\kappa}$ for the functor of cochains. This preserves coproducts, and therefore extends to a colimit-preserving functor

$$c_!: \operatorname{Model}_{\operatorname{Gem}_n^{\operatorname{op}}} \to \operatorname{Model}_{\operatorname{CAlg}_n^{\operatorname{free}}}$$

0.3. **Proposition.** The functor c_1 is fully faithful and preserves loop models.

Proof. We apply Lemma 0.2. With notation from [Bal23, Section 5], the functor \bar{c}_1 decomposes as a composite

$$\operatorname{\mathfrak{R}ing}_{\operatorname{\mathfrak{U}}} \to \operatorname{\mathfrak{R}ing}_{\operatorname{DL}} \to \operatorname{\mathfrak{R}ing}_{\operatorname{\kappa}\otimes\operatorname{DL}},$$

where

- (1) $\operatorname{Ring}_{\mathcal{U}} \to \operatorname{Ring}_{DL}$ is restriction along a map of theories derived from the fact that a \mathcal{U} -ring is exactly a DL-ring on which Q^0 acts by the identity;
- (2) $\operatorname{Ring}_{DL} \to \operatorname{Ring}_{\kappa \otimes DL}$ is given, on underlying modules, by tensoring with κ .

It follows immediately from this decomposition that $\bar{c}_!$ preserves finite limits, and Mandell's work shows that it is fully faithful [Bal23, Proposition 5.3.3].

We can now give the promised identification of the generic fiber. Let Fin_p denote the category of *p*-finite spaces, and write $i: \operatorname{Gem}_p^{\operatorname{op}} \to \operatorname{Fin}_p^{\operatorname{op}}$ for the inclusion. This preserves coproducts and S^n -tensors, and therefore extends to a colimit-preserving functor

$$i_! \colon \operatorname{Model}_{\operatorname{Gem}_p^{\operatorname{op}}}^{\Omega} \to \operatorname{Ind}(\operatorname{Fin}_p^{\operatorname{op}})$$

0.4. **Theorem.** The functor $i_{!}$ is an equivalence of categories.

Proof. First we verify that i_1 is fully faithful. Consider the diagram

$$\begin{array}{ccc} \operatorname{Model}_{\operatorname{Gem}_{p}^{\operatorname{op}}}^{\Omega} & & \longrightarrow \operatorname{Model}_{\operatorname{Gem}_{p}^{\operatorname{op}}} & \xrightarrow{c_{!}} & \operatorname{Model}_{\operatorname{CAlg}_{\kappa}^{\operatorname{free}}} \\ & & \downarrow^{i_{!}} & & \uparrow \\ \operatorname{Ind}(\operatorname{\operatorname{Fin}}_{p}^{\operatorname{op}}) & & \xrightarrow{C^{\bullet}(-;\kappa)} & \operatorname{CAlg}_{\kappa} & \xrightarrow{\simeq} & \operatorname{Model}_{\operatorname{CAlg}_{\kappa}^{\operatorname{free}}} \end{array}$$

 $^{^{2}}$ A careful formulation will appear in forthcoming work with Piotr Pstragowski on synthetic spaces.

All functors in the outer rectangle, except possibly $i_!$, are fully faithful: $c_!$ by the first half of Proposition 0.3 and $C^{\bullet}(-;\kappa)$ by [Lur11, Proposition 3.1.16]. To show that $i_!$ is fully faithful, it therefore suffices to verify that the diagram in fact commutes. By the second half of Proposition 0.3, the top horizontal composite lands in the full subcategory $Model_{CAlg_{\kappa}^{free}}^{\Omega} \subseteq Model_{CAlg_{\kappa}^{free}}$, giving the indicated lifting $\tilde{c}_!$ for which the top triangle commutes. As $c_!$ preserves colimits, so does $\tilde{c}_!$. As all functors in the bottom triangle preserve colimits, to verify that it commutes it suffices to verify that it commutes after restriction to $\operatorname{Gem}_p^{\operatorname{op}}$. This now just follows from the definitions of the functors involved.

Next we verify that i_l is essentially surjective. As i_l is colimit-preserving and fully faithful, its essential image is closed under colimits. As $\mathcal{F}in_p$ is generated under finite limits by $\mathcal{G}em_p$, it follows that $\mathrm{Ind}(\mathcal{F}in_p^{\mathrm{op}})$ is generated under colimits by $\mathcal{G}em_p^{\mathrm{op}}$. As the essential image of i_l contains $\mathcal{G}em_p^{\mathrm{op}}$ by construction, it follows that i_l is essentially surjective.

As i_1 is fully faithful and essentially surjective, it is an equivalence of categories.

0.5. Corollary. There is an equivalence $(Model_{\operatorname{Gem}_n^{\operatorname{op}}}^{\Omega})^{\operatorname{op}} \simeq \operatorname{Pro}(\operatorname{Fin}_p)$.

References

- [Bal21] William Balderrama. Deformations of homotopy theories via algebraic theories, 2021.
- [Bal23] William Balderrama. Algebraic theories of power operations. J. Topol., 16(4):1543–1640, 2023.
- [Lur07] Jacob Lurie. Topics in algebraic topology: The Sullivan conjecture, 2007.
- [Lur11] Jacob Lurie. Derived algebraic geometry XIII: Rational and *p*-adic homotopy theory. https://www.math.ias.edu/~lurie/papers/DAG-XIII.pdf, 2011.
- [Lur17] Jacob Lurie. Higher topos theory. http://www.math.ias.edu/~lurie/papers/HTT.pdf, 2017.
- [Man01] Michael A. Mandell. E_{∞} algebras and p-adic homotopy theory. Topology, 40(1):43–94, 2001.