
UNSTABLE REALIZATIONS OF hj

WILLIAM BALDERRAMA

Abstract. We classify for which n the unstable A-algebra functor applied to a nontrivial
extension of unstable A-modules ΣnF2 →M → Σn+2jF2 is realizable as the mod 2 cohomol-
ogy of a fiber sequence. We explain how this problem is equivalent to the classical question
of when the Whitehead product [ιn, α] vanishes for α the suspension of a Hopf class, studied
and resolved in classical work by many people. We then give a streamlined resolution of this
classical problem using the unstable Adams spectral sequence.

1. Introduction

We work at the prime 2, and all cohomology is with mod 2 coefficients. Let A denote the
Steenrod algebra and U the category of unstable A-modules. For M ∈ U, write U(M) for
the free unstable A-algebra on M . We are interested in the following realizability problem.

1.1. Problem. Given a short exact sequence
0→ K →M → C → 0 (1)

in U, when does there exist a 2-primary fiber sequence
B ← E ← F

satisfying
H∗(B ← E ← F ) ∼= U(K →M → C)?

In this case, we say that the class e ∈ Ext1
U(C,K) classifying Eq. (1) is U-realizable.

Our interest in this problem arose from ongoing work with Francis Baer, Eva Belmont,
and Dan Isaksen to compute with the unstable Adams spectral sequence: in the situation of
Problem 1.1, the Yoneda composition

e ◦ (−) : Ext∗U(K,−)→ Ext∗+1
U (C,−)

participates a map of spectral sequences detecting the boundary map ΩF → B. We are, to
start, particularly interested in the case where F and B are spheres. Recall that

Ext1
U(ΣnF2,Σn+sF2) =

F2{h(n)
j } if n ≥ s = 2j,

0 otherwise,

with nonzero class h(n)
j ∈ Ext1

U(ΣnF2,Σn+2jF2) classifying the extension

0→ Σn+2jF2 → H
(n)
j → ΣnF2 → 0

with nontrivial action of Sq2j . We shall prove the following.

1.2. Theorem. h(n)
j ∈ Ext1

U(ΣnF2,Σn+2jF2) is U -realizable if and only if j ≤ 3 and:
(0) If j = 0, then n ≡ −1 (mod 2);
(1) If j = 1, then n ≡ −1 (mod 4) or n ∈ {2, 6};
(2) If j = 2, then n ≡ −1 (mod 8) or n = 2k − 3 for some k ≥ 3;
(3) If j = 3, then n ≡ −1 (mod 16) or n = 11. �
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1.3. Example. For j ≤ 3 and n ≡ −1 (mod 2j+1), the class h(n)
j is U -realized by the Stiefel

fibrations
S2k−1 V2(R2k+1) S2k

S4k−1 V2(C2k+1) S4k+1

S8k−1 V2(H2k+1) S8k+3

S16k−1 V2(O2k+1) S16k+7.

For the first three this is standard, and we elaborate on the fourth in Example 2.2. The
extension h(2)

2 is realized by the fibration
CP 1 CP 3 HP 1

sending a complex line L ⊂ C4 ∼= H2 to the quaternionic line H⊗C L ⊂ H2.1 We do not have
models for the remaining fibrations, although it seems likely that one exists for h(6)

1 . The
extension h(15)

3 may also be U -realized by a 2-primary fibration
S15 F4/G2 S23

constructed by homotopical methods in [DM91] and known to not exist integrally.

As we shall explain, standard considerations reduce Theorem 1.2 to the following.

1.4. Theorem. Let α ∈ πn+2j−1S
n be a suspension of the jth Hopf class, defined for j ≤ 3

and n ≥ 2j . Then the Whitehead product [ιn, α] ∈ π2n+2j−2S
n
(2) vanishes for exactly the pairs

(j, n) described in Theorem 1.2. �

This theorem is essentially known due to work of Hopf, Whitehead, Hilton, Toda, Adams,
Barratt, Mahowald, Kristensen, Madsen, etc.; see especially [Hop35,HW53,Hil55,Mah65,
KM67,Mah77]. As enumerated there, the only cases unresolved at the time of [KM67] were
[ι2k−3, ν] for k ≥ 5 and [ι27, σ]; the former was resolved in [Mah77], and it seems likely the
latter was known around the time of [MT67], though we have not seen it stated explicitly.

The point of this note is twofold. First, to provide a reference for Theorem 1.2. Second, to
give a streamlined account of Theorem 1.4, the literature for which is somewhat spread out.

1.5. Warning. U -realizability of the extension h
(n)
j is distinct from U -realizability of the

module H(n)
j , i.e. existence of a space X for which H∗(X) ∼= U(H(n)

j ). In particular:
(1) The class h(4)

2 is not U -realizable despite H∗(HP 3) ∼= U(H(4)
2 ); note HP 3/S4 ' C(2ν).

(2) Work of Gonçalves [Gc78, Proof of Corollary 1.3] implies that H(8)
3 is not U -realizable,

but this does not follow from our proof that h(8)
3 is not U -realizable.

2. Basic reductions

We start by reducing Theorem 1.2 to Theorem 1.4.

2.1. Lemma. h(n)
j is U -realizable if and only if there exists a 2-primary spherical fibration

Sn → E → Sn+2j

1Thanks to Christian Kremer for pointing out this construction.
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with the property that the composite
α : Sn+2j−1 → ΩSn+2j → Sn

of the boundary map with the inclusion of the bottom cell is detected by hj.

Proof. As ΣnF2 is realized uniquely up to F2-equivalence by Sn, a U -realization of h(n)
j is

given by such a fiber sequence with
H̃∗(E) ∼= F2{en, en+2j , e2n+2j}

satisfying
en · en+2j = e2n+2j, Sq2n(en) = en+2j , Sqn(en+2j ) = 0 = Sqn+2j (en)

The (n+2j)-skeleton of E is equivalent to the cofiber of α, and so the identity Sq2n(en) = en+2j

implies that α is detected by hj.
Conversely, given such a fiber sequence, the Serre spectral sequence implies that H̃∗(E) ∼=

F2{en, en+2j , e2n+2j} with en ·en+2j = e2n+2j . Moreover, if α is detected by hj then Sq2n(en) =
en+2j . We claim that necessarily H∗(E) ∼= U(H(n)

j ), so that this fiber sequence must be a
U -realization of h(n)

j .
First suppose n > 2j . It follows that H∗(E) is isomorphic to an exterior algebra Λ(en, en+2j ).

To show that H∗(E) ∼= U(H(n)
j ) we must show that Sqn+2j (en) = 0 and Sqn(en+2j ) = 0. The

former follows by instability. The map E → Sn+2j in cohomology sends the fundamental
class of Sn+2j to en+2j , and this shows Sqn(en+2j ) = 0.

Next suppose n = 2j. By the instability condition, e2j+2j = Sq2j (e2j ) = e2
2j , and therefore

H∗(E) is isomorphic to a truncated polynomial ring F2[e2j ]/(e4
2j ). To show H∗(E) ∼= U(H(n)

j )
we must show that Sq2j (e2

2j ) = 0. This follows from the Cartan formula. �

2.2. Example. In [Jam58, Section 8], James constructs octonionic Stiefel fibrations
S8n−1 → V2(On+1)→ S8n+7.

We claim that if n = 2k then this is a U -realization of h(16k−1)
3 . Following Lemma 2.1, it

suffices to show that the bottom attaching map α : S16k+6 → S16k−1 of V2(O2k+1) is detected
by h3. It seems plausible that this could admit a geometric proof, perhaps related to the
equivalence C(σ) ' OP 2, but it may also be verified indirectly as follows.

The Cayley–Dickson construction of the octonions equips the normed algebra O with an
action by the group C2 for which we may identify OC2 ∼= H. This extends to an action on
V2(On) for which V2(On)C2 ∼= V2(Hn). In this way we may regard α as a C2-equivariant map
α : S(8k+3)(1+σ) → S8kσ+(8k−1) for which αC2 is detected by h2.

After stablization, α determines a class in the C2-equivariant stable stem π4+3σSC2 satisfying
ΦC2(α) = u · ν for a unit u. By [AI82, Theorem 14.18], all such classes are C2-equivariant
lifts of u′ · σ for a unit u′. Therefore α : S16k+6 → S16k−1 is detected by h3 as claimed.

2.3. Lemma. Fix α ∈ πn+sS
n. Then the Whitehead product [ιn, α] ∈ π2n+s−1S

n vanishes if
and only if there exists a spherical fibration

Sn → E → Sn+s+1

with the property that the composite
α : Sn+2j−1 → ΩSn+2j → Sn+s+1
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of the boundary map with the inclusion of the bottom cell is homotopic to α.

Proof. By the classification of fiber bundles, fibrations E → Sn+s+1 with fibers homotopy
equivalent to Sn are in correspondence with homotopy classes of maps

Sn+s+1 → BAut(Sn),
where Aut(Sn) is the space of homotopy automorphisms of Sn. By choosing a basepoint of
Sn+s+1 we may make this into a pointed map, adjoint to a pointed map

Sn+s → Aut(Sn) ⊂ Map(Sn, Sn),
where Map(Sn, Sn) is pointed at the identity. By adjunction, such maps are equivalent to
maps

m : Sn × Sn+s → Sn

satisfying m(−, ∗) = ιn, and under this adjunction we may identify α = m(∗,−).
Thus we have shown that there exists a spherical fibration Sn → E → Sn+s+1 with

boundary map α on the bottom cell if and only if there exists a product m : Sn × Sn+s → Sn

satisfying m(−, ∗) = ιn and m(∗,−) = α. Such a product exists if and only if [ιn, α] = 0. �

The above lemmas together, along with Adams’ resolution of the Hopf invariant one
problem [Ada60], combine to reduce Theorem 1.2 to Theorem 1.4.

3. Computing the Whitehead product

It remains to determine when [ιn, α] vanishes for α ∈ {2, η, ν, σ}. Whitehead products at
the prime 2 are most efficiently computed using the EH∆ sequence

· · · Ω2S2n+1 Sn ΩSn+1 ΩS2n+1∆n E Hn .
By work of James [Jam56,Jam57], if α, β ∈ π∗Sn then

[α, β] = ∆n(E(α ∧ β)).
These operations are detected in the unstable Adams spectral sequence that we shall index as

Un,s,f
2 = ExtfU(ΣnF2,Σn+s+fF2)⇒ πn+sS

n.

Specifically, there is an algebraic EH∆ sequence

· · · U2n+1,s−n+1,f−2
2 Un,s,f

2 Un+1,s,f
2 U2n+1,s−n,f−1

2 · · ·∆n E Hn (2)

detecting the topological EH∆ sequence [Cur71], as well as pairings
Un1,s1,f1

2 × Un2,s2,f2
2 → Un1+n2,s1+s2,f1+f2

2

detecting smash products, suspended from more refined composition pairings [BK73]. Writing
generically hj ∈ Un,2j−1,1

2 for n ≥ 2j, we see that the Whitehead products we are interested
in are detected by ∆n(hj) for j ≤ 3 and n ≥ 2j.

The values of ∆n(hj) may be read off a Curtis table,2 which is a way of organizing H∗(A) as
computed via the lambda algebra [Tan85,CGMM87], and is well understood in low filtration
going back to Wang’s computation of H≤3(A) [Wan67]. Specifically, there is a tag

λI ← λnλ2j−1

2See https://williamb.info/lambda/classic-curtis-table.txt for a convenient Curtis table.

https://williamb.info/lambda/classic-curtis-table.txt
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in the Curtis table if and only if λI is the name of ∆n(hj) in Un,n+2j−2,3
2 . It follows that

∆n(hj) = 0 if and only if there is no such tag. In this case, there are two possibilities: either
there is a tag

λnλ2j−1 ← λn+2j ,

or else λnλ2j−1 does not participate in any tag and so names a stable class in H2(A). In
either case, λnλ2j−1 names a class in Un+1,n+2j−1,2

2 satisfying Hn(λnλ2j−1) = hj. Combined
with known information about the Curtis table, this discussion shows the following.
3.1. Lemma. ∆n(hj) = 0 in exactly the following cases:

(1) n ≡ −1 (mod 2j+1), corresponding to the tags
λ2j+1m−1λ2j−1 ← λ2j(2m+1)−1

for m ≥ 1;
(2) n = 2m+j − 2j−1 − 1 for j ≥ 1 and m = −1 or m ≥ 1 corresponding to the nonzero

stable class hj−1hj+m named by λ2m+j−2j−1−1λ2j−1. �

By the algebraic EH∆ sequence, the suspension Un,s,1
2 → Un+1,s,1

2 on the 1-line is a
monomorphism. As a consequence, the only nonzero differentials on the 1-line of the
unstable Adams spectral sequence are desuspensions of the Hopf invariant one differentials
d2(hk+1) = h0h

2
k for k ≥ 2. As these are stably nontrivial, it follows that in all cases

∆n(hj) 6= h0h
2
k. Therefore if j ≤ 3 and ∆n(hj) 6= 0, then ∆n(hj) is a nonzero permanent

cycle in the unstable Adams spectral sequence, detecting the corresponding topological value
of ∆n. Thus we have established the following.
3.2. Lemma. We have

(1) ∆n(2) 6= 0 unless possibly when n ≡ −1 (mod 2);
(2) ∆n(η) 6= 0 unless possibly when n ≡ −1 (mod 4) or n = 2k − 2 for k ≥ 2;
(3) ∆n(ν) 6= 0 unless possibly when n ≡ −1 (mod 8) or n = 2k − 3 for k ≥ 3;
(4) ∆n(σ) 6= 0 unless possibly when n ≡ −1 (mod 16) or n = 2k − 5 for k ≥ 4. �

On the other hand, if ∆n(hj) = 0, then it could be that the corresponding topological
value of ∆n is nonzero, detected in higher Adams filtration. The values of ∆2k−1(2), ∆4k−1(η),
∆8k−1(ν), ∆16k−1(σ) and ∆2(η) vanish for geometric reasons: they are realized by the fibrations
described in Example 1.3. We are left with verifying that ∆6(η) = 0 but ∆2k−2(η) 6= 0 for
k ≥ 4; that ∆2k−3(ν) = 0 for all k ≥ 3; and that ∆11(σ) = 0 but ∆2k−5(σ) 6= 0 for k ≥ 4. We
verify these in turn, beginning with those values which do vanish.

As the octonionic Stiefel fibrations are not nearly as well understood as the real, complex,
and quaternionic Stiefel fibrations, we shall also give an independent proof that ∆16k−1(σ) = 0.
Analogous arguments may be applied to show that ∆2k−1(2), ∆4k−1(η), and ∆8k−1(ν) vanish
without resorting to geometric constructions. Similarly, our proof that ∆6(η) = 0 may be
adapted to independently prove that ∆2(η) = 0.
3.3. Lemma. We have ∆6(η) = 0.
Proof. This holds as η is the stable Hopf invariant of 2σ. In detail, as h0h3 is named by λ6λ1
we find that ∆6(h1) = 0 is realized by H6(h0h3) = h1. As U7,6,∗

2 = 0 for ∗ ≥ 4, the class
h0h3 ∈ U7,7,2

2 is a permanent cycle detecting the class σ′ ∈ π7+7S
7.3 As U13,1,1

2 = F2{h1} it
follows that the identity H6(h0h3) = h1 lifts to H6(ν ′) = η, and therefore ∆6(η) = 0. �

3This also follows from the fact that h(7)
0 is U -realizable, given that h3 ∈ U7,8,1

2 is a permanent cycle.
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3.4. Lemma. We have ∆2k−3(ν) = 0 for k ≥ 3.

Proof. This holds as ν is the stable Hopf invariant of the ηk family. In detail, as h1hk is
named by λ2k−3λ3, we find that ∆2k−3(h2) = 0 is realized by H2k−3(h1hk) = h2. We claim
that h1hk ∈ U2k−2,2k,2

2 is a permanent cycle. As U2k−3,3,∗
2 = F2{h2, h0h2, h

2
0h3} it then follows

that the identity H2k−3(h1hk) = h2 lifts to H2k−3(ηk) = u · ν for a unit u, and therefore
∆2k−3(ν) = 0.

To see that h1hk ∈ U2k−2,2k,2
2 is a permanent cycle, we may argue as follows. As h1hk is

stably a permanent cycle, if dr(h1hk) = x ∈ U2k−2,2k−1,2+r
2 then x is stably trivial. Write

Es,f
2 = ExtfA(F2,Σs+fF2) for the E2-page of the stable Adams spectral sequence. We claim

that the stabilization U2k−2,2k−1,∗
2 → E2k−1,∗

2 is monic for ∗ ≥ 4, implying that there is no
possible such x. Consider the algebraic EH∆ sequences

· · · U2k+1−3,2,∗−2
2 U2k−2,2k−1,2+r

2 U2k−1,2k−1,2+r
2 · · ·

· · · U2k+1−1,1,∗−2
2 U2k−1,2k−1,∗

2 U2k,2k−1,∗
2 · · ·

· · · U2k+1+1,0,∗−2
2 U2k,2k−1,∗

2 U2k+1,2k−1,∗
2 · · ·

∆2k−2 E2k−2

∆2k−1 E2k−1

∆2k E2k

.

We have U2k+1−3,2,∗−2
2 = 0 for ∗ > 4 and U2k+1−3,2,2

2 = F2{h2
1}. The tag λ2k−2λ

2
1 ← λ2kλ1

implies ∆2k−2(h2
1) = 0, implying that E2k−2 is monic. Similarly U2k+1−1,1,∗−2

2 = 0 for ∗ ≥ 4,
implying that E2k−1 is monic. In the final case, U2k+1+1,0,f = F2{hf0} for f ≥ 0. The tag
λ2k−1λ

f+1
0 ← λ2kλf0 implies that ∆2k(hf0) is the class named by λ2k−1λ

f+1
0 . This class does

not desuspend, implying that E2k ◦ E2k−1 is monic even if E2k is not. As U2k+1,2k−1,∗
2 is in

the stable range, altogether this shows that the stabilization U2k−2,2k−1,∗
2 → E2k−1,∗

2 is monic
for ∗ ≥ 4. �

3.5. Lemma. We have ∆11(σ) = 0.

Proof. This holds as σ is the stable Hopf invariant of ν4. In detail, as h2h4 is named by λ11λ7,
we find that ∆11(h3) = 0 is realized by H11(h2h4) = h3. The class h2h4 ∈ U12,18,2

2 is stably
a permanent cycle, so if dr(h2h4) = x then x ∈ U12,17,2+r

2 is stably trivial. By inspection
the stabilization U12,17,∗

2 → E17,∗
2 is monic. Therefore h2h4 ∈ U12,18,2

2 is a permanent cycle
detecting the class ν4 on the 12-sphere, and H11(ν4) is detected by h3. As π23+7S

23 ∼= Z/(16)
generated by σ, it follows that H11(ν4) = u · ν for a unit u, and therefore ∆11(σ) = 0. �

3.6. Lemma. We have ∆16k−1(σ) = 0.

Proof. Let Fk = Fib(S16k → Ω8S16k+8) and write i : Fk → S16k. We claim that there exists a
class αk ∈ π32k+6Fk satisfying H(i(αk)) = σ. This is in the metastable range, meaning that
the James–Hopf maps provide an isomorphism

π32k+6Fk ∼= π32k+7Σ∞RP 16k+8
16k+1

for which H ◦ i corresponds to projection onto the top cell. In particular by James periodicity
there are isomorphisms

π32k+6Fk ∼= π38F1

compatible with H ◦ i, and so it suffices to produce a class α ∈ π16+22S
16 satisfying E8(α) = 0

and H(α) = σ.
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By the tag λ15λ7 ← λ23, we find that λ15λ7 names an element of U16,22,2
2 satisfying

E8(λ15λ7) = 0 and H(λ15λ7) = h3. We claim that this detects a class with the desired
properties. We first claim that λ15λ7 is a permanent cycle. As λ15λ7 stabilizes to h4h3 = 0,
it follows that if dr(λ15λ7) = y then y is stably trivial. For degree reasons the only possible
target is a d2, which would be incompatible with the Hopf invariant one differential on
λ15 = h4. Therefore λ15λ7 is a permanent cycle.

Fix a class α ∈ π16+22S
16 detected by λ15λ7. Then H(α) is detected by λ7 = h3, and as this

is in the stable range it follows that H(α) = u · σ for some unit u, and by modifying α by a
unit we may as well suppose u = 1. If E8(α) = 0 then we are done, so suppose that E8(α) 6= 0.
This is in the stable range, so the only possible alternative is that E8(α) = Pκ is the class
detected by Pd0. This algebraic class desuspends to U7,22,8

2 where it is a permanent cycle for
degree reasons, implying that Pκ also desuspends to π7+22S

7. Therefore if β is a desuspension
of Pκ to S16 then α′ = α − β satisfies H(α′) = H(α) = σ and E8(α′) = Pκ − Pκ = 0 as
needed. �

It remains only to show that certain values of ∆ which vanish in algebra do not vanish in
homotopy.

3.7. Lemma. We have ∆2k−2(η) 6= 0 for k ≥ 4 and ∆2k−5(σ) 6= 0 for k ≥ 5.

Proof. The algebraic identity ∆2k−2(h2) = 0 is realized byH2k−2(h0hk) = h2, and the algebraic
identity ∆2k−5(h3) = 0 is realized by H2k−5(h2hk) = h3. The lemma follows from the Adams
differentials on the classes h0hk for k ≥ 4 and h2hk for k ≥ 5, as we now explain.

Consider the stable Adams differential d3(h0h4) = h0d0. We claim that this desuspends to
a differential on S15. The only alternative is that h0h4 ∈ U15,15,2

2 supports a nonzero d2 hitting
a stably trivial class, and there are no possible targets. The class h0d0 ∈ U15,14,5

2 desuspends
to U14,14,5

2 (in fact to U6,14,5
2 ). As U14,15,≤3

2 = F2{h2
0h4} we see that h0d0 ∈ U14,14,5

2 is not
the target of a differential. Therefore by the geometric boundary theorem [Beh12, Lemma
A.4.1(5)], we find that there exists a class α ∈ π30S

27 detected by h3 for which ∆14(α) is
detected by h0d0. As π30S

27 ∼= Z/(8) generated by σ, necessarily α = u · σ for a unit u and
therefore ∆14(σ) 6= 0 as claimed.

The argument for h0hk and h2hk with k ≥ 5 is identical, only using the differentials
d2(h0hk) = h3

0h
2
k−1 for k ≥ 5, d3(h2h5) = h0p, and d2(h2hk) = h2

0h2hk−1 for k ≥ 6. �

This concludes the proof of Theorem 1.4 and therefore also of Theorem 1.2.
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