UNSTABLE REALIZATIONS OF §;
WILLIAM BALDERRAMA

ABSTRACT. We classify for which n the unstable A-algebra functor applied to a nontrivial
extension of unstable A-modules X" Fy — M — X7 +2°F, is realizable as the mod 2 cohomol-
ogy of a fiber sequence. We explain how this problem is equivalent to the classical question
of when the Whitehead product [¢,,, @] vanishes for « the suspension of a Hopf class, studied
and resolved in classical work by many people. We then give a streamlined resolution of this
classical problem using the unstable Adams spectral sequence.

1. INTRODUCTION

We work at the prime 2, and all cohomology is with mod 2 coefficients. Let A denote the
Steenrod algebra and U the category of unstable A-modules. For M € U, write U(M) for
the free unstable A-algebra on M. We are interested in the following realizability problem.

1.1. Problem. Given a short exact sequence
O—->K—->M-—=>C—0 (1)
in U, when does there exist a 2-primary fiber sequence
B+ E+F
satisfying
H' B+~ E+F)=2UK—-M—C)?

In this case, we say that the class e € Exty(C, K) classifying Eq. (1) is U-realizable.

Our interest in this problem arose from ongoing work with Francis Baer, Eva Belmont,

and Dan Isaksen to compute with the unstable Adams spectral sequence: in the situation of
Problem 1.1, the Yoneda composition

eo(—): Exti (K, —) — Ext;T(C, —)

participates a map of spectral sequences detecting the boundary map QF — B. We are, to
start, particularly interested in the case where F' and B are spheres. Recall that

FQ{hgn)} ifn>s=2,

EXtIlL(En]Fz’ EHSFQ) - {0 otherwise

with nonzero class hg-n) € Extl (2"F,, £ F,) classifying the extension
0— S Fy — HW — ¥"Fy — 0
with nontrivial action of S q2j. We shall prove the following.
1.2. Theorem. h&n) € BExty (X"Fy, E”“]Fg) is U-realizable if and only if 7 < 3 and:
(0) If 7 =0, then n = —1 (mod 2);
(1) If j =1, then n mod 4) or n € {2,6};
(2

-1 (
) If 5 =2, then n = —1 (mod 8) or n = 2% — 3 for some k > 3;
(3) If j =3, then n = —1 (mod 16) or n = 11. O
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1.3. Example. For j <3 and n = —1 (mod 2/!), the class h§") is U-realized by the Stiefel
fibrations

S2k—1 ‘/Q(RQI@—H) SZk
S4k—1 V’Q(@Qk—i—l) S4k+1
( ) ——

S8k—1 ‘/2 H2k+1 SSk+3

Sle—l ‘/2(@%-1-1) Slb’lc—f—?_

For the first three this is standard, and we elaborate on the fourth in Example 2.2. The
extension h? is realized by the fibration

CP! — CP? — HP!
sending a complex line L C C* = H? to the quaternionic line H ®c L C H2' We do not have

models for the remaining fibrations, although it seems likely that one exists for th). The
extension h§15) may also be U-realized by a 2-primary fibration

St —— Fy /Gy —— 8%
constructed by homotopical methods in [DM91] and known to not exist integrally.
As we shall explain, standard considerations reduce Theorem 1.2 to the following.

1.4. Theorem. Let o € m,,9;_15™ be a suspension of the jth Hopf class, defined for 7 < 3
and n > 2. Then the Whitehead product [i,,a] € 7T2n+21_25("2) vanishes for exactly the pairs
(7,m) described in Theorem 1.2. O

This theorem is essentially known due to work of Hopf, Whitehead, Hilton, Toda, Adams,
Barratt, Mahowald, Kristensen, Madsen, etc.; see especially [Hop35, HW53, Hil55, Mah65,
KM67,Mah77]. As enumerated there, the only cases unresolved at the time of [KM67] were
[torx_g,v] for k > 5 and [t97, 0]; the former was resolved in [Mah77], and it seems likely the
latter was known around the time of [MT67], though we have not seen it stated explicitly.

The point of this note is twofold. First, to provide a reference for Theorem 1.2. Second, to
give a streamlined account of Theorem 1.4, the literature for which is somewhat spread out.
(n)
j

module H ]("), i.e. existence of a space X for which H*(X) = U(H ](")) In particular:

(1) The class hS" is not U-realizable despite H*(HP?) & U(H2(4)); note HP3/S* ~ C(2v).
(2) Work of Gongalves [Gc78, Proof of Corollary 1.3] implies that H. ) is not U-realizable,
but this does not follow from our proof that hgs) is not U-realizable.

1.5. Warning. U-realizability of the extension h; " is distinct from U-realizability of the

2. BASIC REDUCTIONS
We start by reducing Theorem 1.2 to Theorem 1.4.
2.1. Lemma. hgn) is U-realizable if and only if there exists a 2-primary spherical fibration

Sy F —y gt

IThanks to Christian Kremer for pointing out this construction.
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with the property that the composite
a: Sl gt gn

of the boundary map with the inclusion of the bottom cell is detected by h;.

Proof. As ¥, is realized uniquely up to Fs-equivalence by S™, a U-realization of hg-") is
given by such a fiber sequence with

H*(E) = Fo{en, €nioi, €ontoi }
satisfying

€n * Ept2i = C2p42j, Sq2n(€n) = €nt2i, S5¢"(€pq0i) =0 = SanJ (en)
The (n+27)-skeleton of E is equivalent to the cofiber of a, and so the identity Sq¢*" (€,) = €12
implies that a is detected by h;.

Conversely, given such a fiber sequence, the Serre spectral sequence implies that H *(F) =
Fo{€n, €niois Conyoi } With €, €, 05 = €940 Moreover, if a is detected by h; then S¢*" (e,,) =
€ni0i- We claim that necessarily H*(E) = U(H ](-")), so that this fiber sequence must be a
U-realization of h§-n).

First suppose n > 27. It follows that H*(F) is isomorphic to an exterior algebra A(e,,, €,425).
To show that H*(E) = U(H](n)) we must show that S¢"*? (e,) = 0 and Sq"(e,40/) = 0. The
former follows by instability. The map £ — S™+2 in cohomology sends the fundamental
class of S"? to e, 9, and this shows Sq¢"(e,,9i) = 0.

Next suppose n = 2/. By the instability condition, ey s = S¢% (ey) = €2;, and therefore
H*(E) is isomorphic to a truncated polynomial ring Fa[eq]/(€5;). To show H*(E) = U(HJ("))
we must show that Sq¢? (€2,) = 0. This follows from the Cartan formula. O

2.2. Example. In [Jam58, Section 8|, James constructs octonionic Stiefel fibrations
SSn—l BN ‘/2(@71,—&—1) BN SSn—I—?'

We claim that if n = 2k then this is a U-realization of hémk_l). Following Lemma 2.1, it
suffices to show that the bottom attaching map a: S6F6 — S16k=1 of 1, (Q?*+1) is detected
by hs. It seems plausible that this could admit a geometric proof, perhaps related to the
equivalence C'(0) ~ QP?, but it may also be verified indirectly as follows.

The Cayley-Dickson construction of the octonions equips the normed algebra O with an
action by the group C, for which we may identify Q%2 = H. This extends to an action on
Vo(O™) for which V5(Q")%2 22 V,(H™). In this way we may regard a as a Co-equivariant map
o SEk+3)(I+e) _y G8ka+(8k=1) fo1 which a? is detected by hs.

After stablization, o determines a class in the Cy-equivariant stable stem 743,50, satisfying
®C2(a) = u - v for a unit u. By [AI82, Theorem 14.18], all such classes are Cy-equivariant
lifts of u’ - o for a unit «’. Therefore a: S1*%+6 — G16k=1 is detected by hs as claimed.

2.3. Lemma. Fix « € 7,,,5". Then the Whitehead product [i,,, ] € 9,15 15™ vanishes if
and only if there exists a spherical fibration

S"— B — Srtstl
with the property that the composite

ar ST Gty gttt
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of the boundary map with the inclusion of the bottom cell is homotopic to a.
Proof. By the classification of fiber bundles, fibrations £ — S"*s*! with fibers homotopy
equivalent to S™ are in correspondence with homotopy classes of maps

SmHt . BAut(S™),

where Aut(S™) is the space of homotopy automorphisms of S™. By choosing a basepoint of
Sn+stl we may make this into a pointed map, adjoint to a pointed map

S™ — Aut(S™) € Map(S™, S™),
where Map(S™, S™) is pointed at the identity. By adjunction, such maps are equivalent to
maps
m: S™ x "5 §n
satisfying m(—, *) = t,,, and under this adjunction we may identify o = m(x, —).
Thus we have shown that there exists a spherical fibration S — E — S"*+! with

boundary map « on the bottom cell if and only if there exists a product m: S™ x S™*s — S
satisfying m(—, %) = ¢, and m(%, —) = . Such a product exists if and only if [1,,a] =0. O

The above lemmas together, along with Adams’ resolution of the Hopf invariant one
problem [Ada60], combine to reduce Theorem 1.2 to Theorem 1.4.

3. COMPUTING THE WHITEHEAD PRODUCT

It remains to determine when [¢,,, @] vanishes for a € {2,7n,v,0}. Whitehead products at
the prime 2 are most efficiently computed using the EHA sequence

S Q282 By g B il e, gt
By work of James [Jamb6, Jam57], if o, f € m,S™ then
[, B] = An(E(a A B)).
These operations are detected in the unstable Adams spectral sequence that we shall index as
U3 = Bxt] (Z"Fa, S" ) = m0S™
Specifically, there is an algebraic EHA sequence

_ _ A H —n.f—
. U22n+1,s n+1,f—2 n U2n,s,f E U2n+1,s,f n U22n+1,s n,f—1 (2)

detecting the topological EHA sequence [Cur71], as well as pairings
U2nl7517f1 % U;Q’SQ’fQ N U;1+n2,81+82,f1+f2

detecting smash products, suspended from more refined composition pairings [BK73]. Writing

generically h; € Uy 2= for n > 27, we see that the Whitehead products we are interested
in are detected by A, (h;) for j <3 and n > 27.

The values of A, (h;) may be read off a Curtis table,” which is a way of organizing H*(A) as
computed via the lambda algebra [Tan85, CGMMS87], and is well understood in low filtration
going back to Wang’s computation of H=3(A) [Wan67]. Specifically, there is a tag

AL Ao

2See https://williamb.info/lambda/classic-curtis-table.txt for a convenient Curtis table.
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in the Curtis table if and only if A; is the name of A, (h;) in Uy" mF2 =23 1t follows that
A, (h;) = 0 if and only if there is no such tag. In this case, there are two possibilities: either
there is a tag
AnAgi—_1 < Angai,

or else A, Api_; does not participate in any tag and so names a stable class in H?(A). In
either case, A\, \qj_; names a class in U”Jrl LSk e satisfying H,(AnAgi—1) = hj. Combined
with known information about the Curtis table, this discussion shows the following.
3.1. Lemma. A, (h;) = 0 in exactly the following cases:

(1) n = —1 (mod 27t'), corresponding to the tags

A2it1m—1A2i—1 = A2i(2m+1)—1

for m > 1;
(2) n=2m" — 2771 — 1 for j > 1 and m = —1 or m > 1 corresponding to the nonzero
stable class hj_1hjm, named by Aom+i_gi-1_1Aaj_1. O

By the algebraic EHA sequence, the suspension Uy — Uy*h*! on the 1-line is a
monomorphism. As a consequence, the only nonzero differentials on the 1-line of the
unstable Adams spectral sequence are desuspensions of the Hopf invariant one differentials
do(hry1) = hohi for k > 2. As these are stably nontrivial, it follows that in all cases
A, (hj) # hohi. Therefore if j < 3 and A, (h;) # 0, then A, (h;) is a nonzero permanent
cycle in the unstable Adams spectral sequence, detecting the corresponding topological value
of A,,. Thus we have established the following.

3.2. Lemma. We have

(1) A,(2) # 0 unless possibly when n = —1 (mod 2);

(2) A,(n) # 0 unless possibly when n = —1 (mod 4) or n = 2¥ — 2 for k > 2;

(3) A,(v) # 0 unless possibly when n = —1 (mod 8) or n = 2% — 3 for k > 3;

(4) An(0) # 0 unless possibly when n = —1 (mod 16) or n = 2% — 5 for k > 4. O

On the other hand, if A, (h;) = 0, then it could be that the corresponding topological
value of A, is nonzero, detected in higher Adams filtration. The values of Agx_1(2), Ayr—_1(n),
Ag—1(v), Ater—1(0) and Ay(n) vanish for geometric reasons: they are realized by the fibrations
described in Example 1.3. We are left with verifying that Ag(n) = 0 but Ag_o(n) # 0 for
k > 4; that Agr_s(v) = 0 for all £ > 3; and that Ay;(0) = 0 but Age_5(0) # 0 for k > 4. We
verify these in turn, beginning with those values which do vanish.

As the octonionic Stiefel fibrations are not nearly as well understood as the real, complex,
and quaternionic Stiefel fibrations, we shall also give an independent proof that Ajg_1(0) = 0.
Analogous arguments may be applied to show that Agg_1(2), Ag—1(n), and Agg_1(v) vanish
without resorting to geometric constructions. Similarly, our proof that Ag(n) = 0 may be
adapted to independently prove that Aq(n) = 0.

3.3. Lemma. We have Ag(n) = 0.

Proof. This holds as 7 is the stable Hopf invariant of 20. In detail, as hohs is named by Ag\;
we find that Ag(hy) = 0 is realized by Hg(hohs) = hy. As U76* = 0 for * > 4, the class
hohs € U27’7’2 is a permanent cycle detecting the class o/ € m7,757.% As Uy>"' = Fo{h,} it
follows that the identity Hg(hohs) = hy lifts to Hg(v') = n, and therefore Ag(n) = 0. O

3This also follows from the fact that h(g?) is U-realizable, given that hg € U27 Slisa permanent cycle.
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3.4. Lemma. We have Ay_3(v) =0 for k > 3.

Proof. This holds as v is the stable Hopf invariant of the 7, family. In detail, as hihy is
named by Aox_3A3, we find that Ayr_5(he) = 0 is realized by Hoyx_3(h1hy) = he. We claim
that hihy € U22k_2’2k’2 is a permanent cycle. As U22k_3’3’* = Fa{ha, hoha, hihs} it then follows
that the identity Hox_s(hihy) = hg lifts to Hor_3(nx) = w - v for a unit u, and therefore
Agk_g(u) =0.

To see that hihy € U22k_2’2k’2 is a permanent cycle, we may argue as follows. As hyihy is
stably a permanent cycle, if d.(h1hy) = = € U22k72’2k71’2+r then x is stably trivial. Write
Byl = Extfl(Fg, »5+/Fy) for the Ey-page of the stable Adams spectral sequence. We claim
that the stabilization UQQk_Q’zk_l’* — E%k_l’* is monic for * > 4, implying that there is no
possible such z. Consider the algebraic EHA sequences

2k+1_39 42 Bok g 2k _2 9k _1 247 Bk s 2k_12F_1 247
D —— Uj =30, —— +
2k+1_1717*_2 A2k71 Qk_l’Qk_L* E2k71 Qk,Qk—17* .
- — U, — U, — U, _—
okl 042 Dok ok ok _1 x By ok 11,2k 1 %
- — U, + — U; —>U2Jr _

We have U2 22 — 0 for > 4 and U2 32 = Fo{h?}. The tag Ape_sA2 ¢ Agi);
implies Agk_5(h?) = 0, implying that E,x_, is monic. Similarly U22k+1_1’1’*_2 =0 for * > 4,
implying that Eos_; is monic. In the final case, Usit1410 = ]Fg{h{;} for f > 0. The tag
)\Qk,l)\{;ﬂ +— )\2k>\£ implies that AQk(hé) is the class named by )\Qk,l)\gﬂ. This class does

not desuspend, implying that Eox o Eor_; is monic even if Fyr is not. As U22k+1’2k_1’* is in
k_ook_1 4 k_1 4 . .
the stable range, altogether this shows that the stabilization U; ~>* ~"* — E2 ~"* is monic

for * > 4. ]
3.5. Lemma. We have Ay;(0) = 0.

Proof. This holds as ¢ is the stable Hopf invariant of v4. In detail, as hohy is named by A1 A7,
we find that Ay (hs) = 0 is realized by Hyi(hohy) = hs. The class hohy € Uy>'™ is stably

a permanent cycle, so if d,(hohy) = x then = € U212’17’2+r is stably trivial. By inspection
the stabilization U,>'™* — F,"* is monic. Therefore hohy € Uy>'®? is a permanent cycle

detecting the class v4 on the 12-sphere, and Hyi(vy) is detected by hs. As ma3,75% = 7Z/(16)
generated by o, it follows that Hyi(r4) = u - v for a unit u, and therefore Ay;(o) = 0. d

3.6. Lemma. We have Ayg,_1(0) = 0.

Proof. Let Fy = Fib(S'* — Q8S16++8) and write i: Fy, — S'%. We claim that there exists a
class ay € maop16F satisfying H(i(ax)) = 0. This is in the metastable range, meaning that
the James—Hopf maps provide an isomorphism

16k+-8
P16k+1

for which H o corresponds to projection onto the top cell. In particular by James periodicity
there are isomorphisms

o0
Taokt6 Lk = M3ope72 R

Taoky6 b = Mgl

compatible with H o4, and so it suffices to produce a class a € 76,2051 satisfying E®(a)) = 0
and H(a) =o.
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By the tag AjsA\7 < A9z, we find that Aj5A7 names an element of U216’22’2 satisfying

E3(\isA7) = 0 and H(A5A\;) = hs. We claim that this detects a class with the desired
properties. We first claim that A5 A; is a permanent cycle. As A5 A; stabilizes to hyhs = 0,
it follows that if d.(A15A7) = y then y is stably trivial. For degree reasons the only possible
target is a do, which would be incompatible with the Hopf invariant one differential on
A5 = hy. Therefore Aj5\; is a permanent cycle.

Fix a class a € 161225 detected by A5 A7. Then H () is detected by Az = hs, and as this
is in the stable range it follows that H(a) = u - o for some unit u, and by modifying « by a
unit we may as well suppose v = 1. If E¥(a) = 0 then we are done, so suppose that E®(a) # 0.
This is in the stable range, so the only possible alternative is that E®(a) = Pk is the class
detected by Pdy. This algebraic class desuspends to U27 228 where it is a permanent cycle for
degree reasons, implying that Pk also desuspends to 77422S”. Therefore if 3 is a desuspension
of Pk to S' then o/ = a — 3 satisfies H(a') = H(a) = ¢ and E®(a/) = Pk — Pk = 0 as
needed. O

It remains only to show that certain values of A which vanish in algebra do not vanish in
homotopy.

3.7. Lemma. We have Ayx_5(n) # 0 for k > 4 and Ayr_5(0) # 0 for k > 5.

Proof. The algebraic identity Agx_o(he) = 0 is realized by Hor_o(hohi) = ho, and the algebraic
identity Agr_5(hs) = 0 is realized by Hyr_5(hohg) = hs. The lemma follows from the Adams
differentials on the classes hohy for k > 4 and hoh; for k > 5, as we now explain.

Consider the stable Adams differential d3(hohy) = hodg. We claim that this desuspends to
a differential on S5, The only alternative is that hohs € Uy ™2 supports a nonzero ds hitting
a stably trivial class, and there are no possible targets. The class hody € Uy ™" desuspends
to Uy™'™® (in fact to US™®). As U= = Fy{h2hs} we see that hody € Uy™'™® is not
the target of a differential. Therefore by the geometric boundary theorem [Beh12, Lemma
A.4.1(5)], we find that there exists a class a € 7305%" detected by hg for which Aj4(«) is
detected by hody. As m305%" = Z/(8) generated by o, necessarily o = u - o for a unit u and
therefore A14(0) # 0 as claimed.

The argument for hghy and hohy with £ > 5 is identical, only using the differentials
dz(hghk) = h%h%_l for k Z 5, dg(hghg,) = hop, and dg(hghk) = h%hghk_1 for k Z 6. ]

This concludes the proof of Theorem 1.4 and therefore also of Theorem 1.2.
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