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Intro

Big goal
Compute the stable homotopy groups of the sphere spectrum.

Recent breakthrough technique
Compute the stable homotopy groups of other sphere spectra.

Form of the technique
1 These other sphere spectra are often deformations of S; modules

over them give deformations of Sp.
2 Studying these deformations can reveal otherwise hidden

information about classical homotopy theory.
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A square in need of a catchy name
The standard context

SpR SpC2 Sp

SpC Sp

Be

−⊗RC U

Φ

Be

.

Studying these categories together reveals otherwise obscured insights.

No motivic knowledge is needed for this talk.

Some work (highly non-exhaustive)
1 Isaksen-Wang-Xu (2020): use SC to compute π∗S2 into 90-stem;
2 Belmont-Isaksen (2020) compute π∗SR, Guillou-Isaksen-? (tbd)

compute π∗SC2 ; these give e.g. root invariants in π∗S;
3 Other contexts: Wilson-Østvær (2016) compute Fq-motivic stems,

Burklund-(Hahn-Senger,Isaksen-Xu) (2019,tbd): F2-synthetic π∗;
4 Add your name: there are many more things to compute.
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The deformation viewpoint, or, why is SC so useful?
Work at a prime p.

Theorem (Pstrągowski 2018, Gheorghe-Wang-Xu 2018, ...)
There is an element τ ∈ π∗SC, and:

1 SC/(τ) is E∞, with π∗SC/(τ) = Ext(MU∗,MU∗MU)(MU∗,MU∗) and

ModSC/(τ) ≈ even MU∗MU -comodules.

2 SC[τ−1] is more easily E∞, with π∗SC[τ−1] = π∗S⊗ Z[τ±1],

ModSC[τ−1] = Sp.

3 The τ -inverted τ -BSS π∗SC/(τ)[τ±1]⇒ π∗S[τ±1] is the ANSS.
Thus Spcell

C is a deformation with generic fiber Sp, algebraic special
fiber, and deformation data = Adams-Novikov data.
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Goal of talk

Idea
For computations of stable stems, the motivic stuff is a red herring:

1 Can directly define a “SMU” with SpMU := ModSMU
≈ SpC;

2 Have deformations SR and SpR from other R-based Adams SS’s;
3 Generally, deformations come anywhere spectral sequences come.

Goal
Explain the filtered object approach to building deformations.

Outline
1 Ordinary filtered algebras as deformations;
2 Spectral sequences and deformations;
3 Various examples.
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Filtered objects: lots of definitions
Fix a category C.

Definition: Filtered objects
The category CFilt of filtered objects in C is the category of functors
X : (Z, <)→ C:

· · · → X(−1)→ X(0)→ X(1)→ · · · .

Definition: Day convolution of filtered objects
For C monoidal with suitable colimits, CFilt has monoidal product

(X ⊗ Y )(n) = colim
p+q≤n

X(p)⊗ Y (q).

Definition: Filtered algebras
Monoids in CFilt are filtered algebras. E.g. when C = Modk, get filtered
k-algebras: A = colimnA≤n with A≤n ⊗A≤m → A≤n+m.

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 6 / 35



Filtered objects: lots of definitions
Fix a category C.

Definition: Filtered objects
The category CFilt of filtered objects in C is the category of functors
X : (Z, <)→ C:

· · · → X(−1)→ X(0)→ X(1)→ · · · .

Definition: Day convolution of filtered objects
For C monoidal with suitable colimits, CFilt has monoidal product

(X ⊗ Y )(n) = colim
p+q≤n

X(p)⊗ Y (q).

Definition: Filtered algebras
Monoids in CFilt are filtered algebras. E.g. when C = Modk, get filtered
k-algebras: A = colimnA≤n with A≤n ⊗A≤m → A≤n+m.

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 6 / 35



Filtered objects: lots of definitions
Fix a category C.

Definition: Filtered objects
The category CFilt of filtered objects in C is the category of functors
X : (Z, <)→ C:

· · · → X(−1)→ X(0)→ X(1)→ · · · .

Definition: Day convolution of filtered objects
For C monoidal with suitable colimits, CFilt has monoidal product

(X ⊗ Y )(n) = colim
p+q≤n

X(p)⊗ Y (q).

Definition: Filtered algebras
Monoids in CFilt are filtered algebras. E.g. when C = Modk, get filtered
k-algebras: A = colimnA≤n with A≤n ⊗A≤m → A≤n+m.

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 6 / 35



Filtered objects as graded objects
Observation
There is an equivalence of categories

Sy : Fun(Z,LModk) ' LModk[σ], |σ| = 1,

where LModk[σ] = graded k[σ]-modules, given by

(SyM)n = M≤n, σ : M≤n →M≤n+1.

This is sym. monoidal for k commutative (and works more generally).

Filtered algebras as deformations
If A = colimnA≤n is a filtered algebra, then

1 (SyA)/(σ) = grA,
2 (SyA)[σ−1] = A⊗ Z[σ±1].

SyA is a deformation with generic fiber A[σ±1] and special fiber grA.
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Categorification

Filtered modules as a deformation
The category LModSyA fits into a span

LModgrA LModSyA LModAσ 7→1σ 7→0 ,

exhibiting SyA-modules as a deformation with generic fiber LModA
and special fiber LModgrA.

Remark
If LModFilt

A = filtered A-modules, span is equivalent to

LModgrA LModFilt
A LModA

gr colim .
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The C-motivic Steenrod algebra

The classic Steenrod algebra
A is the F2-algebra given by:

1 Generators: Sqr for r ≥ 0, with |Sqr| = −r and Sq0 = 1;
2 Relations: Sq2s−r−1Sqs =

∑
i

(r−i−1
i

)
Sq2s−1−iSqs−r+i for r ≥ 0.

The C-motivic Steenrod algebra
AC is the F2[τ ]-algebra, with |τ | = (0,−1), given by:

1 Generators: Sqr for r ≥ 0, with |Sqr| = −(r, b r2c) and Sq0 = 1;
2 Relations: Sq2s−r−1Sqs =

∑
i

(r−i−1
i

)
τ ?Sq2s−1−iSqs−r+1 for r ≥ 0,

where ? ∈ {0, 1} fixes degrees.
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The C-motivic Steenrod algebra as a deformation
Last slide
AC is the same as A, except generators have an extra bidegree, and
have a τ to make relations homogeneous.

A filtration
Define the weight filtration on A by

A≤n = {SqI : I = (r1, . . . , rn) with Σib ri
2 c ≤ n} ⊂ A.

Then with respect to this filtration we have

SyA = AC (σ ↔ τ).

Side questions
1 Is there a more conceptual explanation for this filtration?

(Idea: want it to be related to the Frobenius on A∗).
2 Similarly AR = Sy(AR/(ρ = 1)); is AR/(ρ = 1) recognizable?
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SS for the cohomology of a filtered algebra
Fix A = augmented k-algebra (maybe add finiteness), k a field.

Definition: cohomology algebra
The cohomology algebra H∗(A) can be defined as:

H∗(A) = Ext∗A(k, k) = H∗CA, CnA = Modk(I(A)⊗kn, k).

Now say A = colimnA≤n filtered by subalgebras.

The filtration spectral sequence
Filtration on A gives filtration CA = limmCA[≤ m] by

CnA[≤ m] = ker

CnA[≤ m]→Modk(
∑

r1+···+rn≤m
A≤r1 ⊗ · · · ⊗A≤rm , k)

.
This satisfies grCA = CgrA, therefore giving the filtration SS

FiltE1 = H∗(grA)⇒ H∗(A).
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 11 / 35
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SS for the cohomology of a deformation
From A, extract SyA.

Definition: cohomology algebra
The cohomology algebra H∗(SyA) is defined as

H∗(SyA) = Ext∗SyA(k[σ], k[σ]) = π−∗ExtSyA(k[σ], k[σ]).

The Bockstein spectral sequence
Have a filtration

ExtSyA(k[σ], k[σ]) = lim
n

ExtSyA(k[σ], k[σ]/(σn)),

fibers are
ExtSyA(k[σ], k{σn}) ' ExtSyA/(σ)(k, k).

This gives the σ-Bockstein spectral sequence

BSSE1 = H∗(SyA/(σ))[σ]⇒ H∗(SyA).
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 12 / 35
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But filtered algebras and deformations are the same
Last two slides
Have the filtration SS and Bockstein SS:

FiltE1 = H∗(grA)⇒ H∗(A);
BSSE1 = H∗(SyA/(σ))[σ]⇒ H∗(SyA).

Remember SyA/(σ) = grA.

Theorem
There is an isomorphism of spectral sequences

BSSEr[σ−1] ∼= FiltEr ⊗ Z[σ±1].

Upshot
As BSSE1 is free over k[σ], inverting σ loses no information. Thus the
BSS and Filtration SS carry the same information.
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But filtered algebras and deformations are the same
Last two slides
Have the filtration SS and Bockstein SS:

FiltE1 = H∗(grA)⇒ H∗(A);
BSSE1 = H∗(SyA/(σ))[σ]⇒ H∗(SyA).

Remember SyA/(σ) = grA.

Theorem
There is an isomorphism of spectral sequences

BSSEr[σ−1] ∼= FiltEr ⊗ Z[σ±1].

Upshot
As BSSE1 is free over k[σ], inverting σ loses no information. Thus the
BSS and Filtration SS carry the same information.

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 13 / 35



But filtered algebras and deformations are the same
Last two slides
Have the filtration SS and Bockstein SS:

FiltE1 = H∗(grA)⇒ H∗(A);
BSSE1 = H∗(SyA/(σ))[σ]⇒ H∗(SyA).

Remember SyA/(σ) = grA.

Theorem
There is an isomorphism of spectral sequences

BSSEr[σ−1] ∼= FiltEr ⊗ Z[σ±1].

Upshot
As BSSE1 is free over k[σ], inverting σ loses no information. Thus the
BSS and Filtration SS carry the same information.

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 13 / 35



Cohomology of a deformation

Interpretation of theorem
1 As we’re over a field, H∗(SyA) = BSSE∞ as k[σ]-modules;
2 By construction, BSSdr-differentials are those dr(x) = σry;
3 By BSSdr ↔ Filtdr, find

H∗(SyA) = (FiltZ∞ ⊗ Z[σ])/(σr · Filtdr(x) = 0 : x ∈ FiltZr).

So additively H∗(SyA) may be read off the filtration spectral sequence.

When not over a field, just have more extension problems.

Cohomology as a deformation
1 Have H∗(SyA)[σ−1] = H∗(A)⊗ Z[σ±1];
2 Have an edge map H∗(SyA)/(σ)→ FiltE∞ (not iso).
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Where the magic happens
Last slide
Can read additive structure of H∗(SyA) off SS H∗(grA)⇒ H∗(A).

Key observation
The multiplicative (and higher) structure of H∗(SyA) tracks higher
structure of the filtration SS, such as extension problems.

Examples
1 A relation x · y = σ · z in H∗(SyA) gives:

1 A relation x · y = 0 in FiltE∞;
2 A relation x · y = z in H∗(A);

so describes a hidden multiplicative extension in the filtration SS.
2 Mixed relations (e.g. x · y = w + σ · z), Massey products, etc. track

more complicated distinctions between FiltE∞ and H∗(A).

H∗(SyA) encodes the full process of computing with the filtration SS.
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 15 / 35
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Application to the Steenrod algebra
Question
If H∗(SyA) just describes the filtration SS, why bother with it?

Recall A = Steenrod algebra, AC = SyA for a suitable filtration.
The first Hopf element

1 Have h1 ∈ H1(A). Have h4
1 = 0, so H∗(A)[h−1

1 ] = 0.
2 Lifts to h1 ∈ H1(AC); now h4

1 6= 0, instead just τ · h4
1 = 0.

Theorem (Guillou-Isaksen 2014)
H∗(AC)[h−1

1 ] ∼= F2[h±1
1 , v4

1, vn : n ≥ 2].

Corollary
Can detect various relations in H∗(A) using the zigzag

H∗(AC)[h−1
1 ]← H∗(AC)→ H∗(A).
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1 6= 0, instead just τ · h4
1 = 0.

Theorem (Guillou-Isaksen 2014)
H∗(AC)[h−1

1 ] ∼= F2[h±1
1 , v4

1, vn : n ≥ 2].

Corollary
Can detect various relations in H∗(A) using the zigzag

H∗(AC)[h−1
1 ]← H∗(AC)→ H∗(A).
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On beyond ordinary algebra

Observation
1 Went from filtration on A to filtration on CA (or ExtA(k, k));
2 It’s the homotopical filtration that did all the work.

So we should work with filtered spectra.

Filtered spectra: quick facts
1 (Lurie) Symmetric monoidal equivalence Sy: SpFilt 'ModS[σ](Spgr)
2 C(σn) = S[σ]/(σn) is E∞, with C(σ) = unit of Spgr;
3 Given X = colimnX(n) filtered spectrum, have

(X/(σn))(p) = (X ⊗ C(σn))(p) = Cof(X(p− n)→ X(p)).

This, and what follows, generalizes to other stable categories.
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Review: spectral sequences
Notation for X ∈ SpFilt

Write X(p, q) = Cof(X(p)→ X(q)), with X(∞) = colimX.

Theorem
There is a spectral sequence

E1
p,q = πqX(p− 1, p)⇒ πqX(∞), dp,qr : Erp,q → Erp−r,q−1;

Explanation, or, what is a spectral sequence?
1 Each (Er, dr) is a chain complex, i.e. dr ◦ dr = 0;
2 Isomorphisms Er+1 = H∗(Er, dr) = Zr/Br (but dr+1 is extra).

So each Er+n is a subquotient of Er. In good cases (i.p. X(−∞) = 0):
3 With E∞ = (∩rZr)/(∪rBr) and F p = Im(πqX(p)→ πqX(∞)),

E∞ = grπ∗X(∞).

All spectral sequences will be considered convergent.
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Review: construction of the spectral sequence
Construction
For p ≤ q ≤ r, have cofibering

X(p, q)→ X(p, r)→ X(q, r).

If we define

Erp,q = Im(πqX(p− r, p)→ πqX(p− 1, p+ r − 1)),

we get dr : Erp,q → Erp−r,q−1 induced by a boundary map.

Example
Have E1

p,q = πqX(p− 1, p), and d1 induced by boundary in X.

Terminology
The collection of π∗X(p, q) and maps is a Cartan-Eilenberg system.
Can show Er+1 = H∗(Er, dr), so get a spectral sequence.
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 19 / 35
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Review: detection

Definitions: filtration and detection
x ∈ πqX(∞) is in filtration p if there is a lift

Sq

· · · X(p− r) · · · X(p) · · · X(∞)

X(p− r, p)

X(p− 1, p+ r − 1)

xx̃

.

If x projects to x ∈ Erp,q ⊂ πqX(p− 1, p+ r − 1) nonzero, one says that
x is detected by x.
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Review: hidden extensions

“Definition”
A hidden additive extension refers to situations like:

1 x ∈ πqX(∞) with 2x 6= 0;
2 x is detected by x ∈ E∞p,q, and 2x = 0.

In general hidden extensions are the failure of “E∞ = π∗X(∞)”.

Closer look
Fix x as above. Then:

1 As x is in filtration p, lift to x̃ : Sq → X(p);
2 As 2x 6= 0, have 2x̃ 6= 0;
3 As 2x = 0 in E∞, have lift 2x̃ : Sq → X(p− 1);

that is 2x lifts higher through the tower than x.
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Homotopy groups of a filtered spectrum
Definition
The bigraded homotopy groups of X ∈ SpFilt are πs,cX = πsX(c).
Thus πs,∗X is a Z[σ]-module, |σ| = (0, 1).

Example
Filtration on A gives filtration on CA with π∗,∗CA = H∗(SyA).

As a deformation
1 Have π∗,∗X[σ−1] = π∗X(∞)⊗ Z[σ±1];
2 Have edge map (π∗,∗X)/(σ)→ E∗,∗∞ .

The hidden extension revisited
1 x ∈ πqX(∞) in filtration p: lifts to x̃ ∈ πq,pX;
2 If 2x = 0 in E∞: have σ-divisibility 2x̃ = σ · 2̃x.

In general π∗,∗X records the computation of the spectral sequence
π∗ grX ⇒ π∗X(∞), e.g. σr-torsion corresponds to dr-differentials.
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 22 / 35
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The trigraded spectral sequence
Filtrations

1 X(∞) = colimpX(p) gave spectral sequence for π∗X(∞);
2 X(n) = colimp≤nX(p) gives spectral sequence for π∗X(n).

Description
The SS for π∗X(n) looks like that for π∗X(∞), cut off at filtration n:

1 Stuff in filtration > n is no longer present;
2 If dr(x) in filtration > n for X(∞), then x is p.c. for X(n).

Theorem (putting it all together)
Trigraded spectral sequence Es,c,f1 = (πs,c−f (X/σ)){σf} ⇒ πs,cX.

Proof
This is just the σ-Bockstein spectral sequence

Es,c,∗1 = πs,cX/(σ)[σ]⇒ πs,cX.
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Deformations of stable homotopy theories
Filtered ring spectra as deformations
For R ∈ SpFilt a filtered A∞ ring, have

1 R(∞) an ordinary A∞ ring spectrum;
2 grR = R⊗ C(σ) a graded A∞ ring spectrum.

Get deformation with generic fiber R(∞) and special fiber grR.

Filtered modules as a deformation
Have filtered module category LModR, with span

LModR⊗C(σ) LModR LModR(∞)
σ 7→0 σ 7→1 :

A deformation, generic fiber LModR(∞) and special fiber LModR⊗C(σ).
Deformation theory governed by “higher structure” of filtration SS

πq grR⇒ πqR(∞).

Can generalize to other settings.
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 24 / 35
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The trivial deformation
Observation
SpFilt = ModS[σ] itelf has generic fiber Sp and special fiber Spgr.

The generalized Mahowald square
For X ∈ SpFilt, if each H∗X(p− 1) ⊂ H∗X(p) (say H = HF2), get

ExtA(H∗,∗ grX)[σ] ExtA(H∗,∗X)

π∗,∗ grX[σ] π∗,∗X

Algebraic
Bockstein SS

ASS ASS
Bockstein SS

.

The diagonal: the filtration-complete Adams SS
Where HFilt := H ⊗ C(σ), have AFilt = A[ε]/(ε2) and

E2 = ExtAFilt(H∗,∗ grX)⇒ π∗,∗X.

When the Mahowald square is defined, have E2 = ExtA(H∗ grX)[σ].
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 25 / 35
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The t-structure deformation
Whitehead towers
There is a lax symmetric monoidal functor

W : Sp→ SpFilt, W (X)n = τ≥nX.

Definition: synthetic R-modules
Given A∞ ring R, get SynR = LModW (R) = synthetic R-modules.
Deformation: generic fiber LModR and special fiber LModR∗ = D(R∗).

Example application
Have functor W : LModR → SynR. For R commutative:

1 (W (M)⊗W (R) W (N))[σ−1] 'M ⊗R N ∈ModR;
2 gr strong sym. monoidal, so gr(W (M)⊗W (R)W (N)) 'M∗⊗L

R∗ N∗.
Thus filtration SS = Künneth spectral sequence.

Remark: a more abstract construction
Can show SynR = Sp-valued modules of algebraic theory LModfree

R .
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 26 / 35
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Filtered model of Borel C2-equivariant homotopy
Work with everything 2-complete.

Definition: the root sphere
Let SRoot = filtered spectrum with SRoot(n) = F (P∞−n,S); write ρ = σ.

Facts
1 SRoot is a filtered E∞ ring spectrum (?), so get SpRoot := ModSRoot ;
2 Have SRoot/(ρ) = S[τ±1], and Lin’s theorem: SRoot[ρ−1] ' S[ρ±1];
3 Rmk: C2 Segal conj. (Lin): πs+cσSC2 = πs,cSRoot.

Reinterpretation
There is an equivalence of categories

ν : Fun(BC2, Sp) ' SpCpl(ρ)
Root , ν(X)(n) = F (S−nσ, X)hC2 .

Question
What does this look like for other groups?
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Borel C2-equivariant homotopy as a deformation
Root invariants
Have filt SS = Atiyah-Hirezbruch SS π∗ gr SRoot = π∗S[τ±1]⇒ π∗S.
The root invariants R(α) of α ∈ π∗S are those β ∈ π∗S that detect α.

Interpretation
Borel C2-spectra are a deformation with:

1 Generic fiber Sp, realized by Tate constr. Fun(BC2, Sp)→ Sp;
2 Special fiber Sp, realized by the forgetful map Fun(BC2, Sp)→ Sp;
3 Deformation data governed by root invariant data.

Rmk: the Borel Steenrod algebra
Have ARoot = Sy(H∗c (P∞−∞)⊗′ A) with H(ARoot) = SyRoot(H(A)), and

H∗(A)[τ±1][ρ] H∗(ARoot) π∗,∗SRoot
ρ-BSS

Algebraic AHSS
Borel ASS

Levelwise ASS .

Outside SpRoot, get filt-complete ASS H∗(A)[τ±1, ρ]⇒ π∗,∗SRoot.
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Décalage

Spectral sequence of a cosimplicial spectrum
Given X : ∆→ Sp, there is a spectral sequence

E2 = H∗N(π∗X)⇒ π∗TotX,

where N = chain complex of cosimplicial group π∗X.

Fact
There is lax symmetric monoidal Dec: Fun(∆, Sp)→ SpFilt such that

1 colim DecX ≈ TotX;
2 Filtration SS E1 = cosimplicial SS E2.

Construction
Have (DecX)(n) = Tot(m 7→ τ≥nX(m)).
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Synthetic spectra
Fix an A∞ ring R.

The descent complex
Have an augmented cosimplicial A∞ ring:

CR = S R R⊗R R⊗R⊗R · · ·

Totalization is S∧R = R-nilpotent completion of S.

Definition: synthetic spectra
Set SyR S = Dec(CR); then R-synthetic spectra = SpR = LModSyR S.

R-based Adams-Novikov spectral sequence
Have SyR : Sp→ SpR by SyR(X) = Dec(X ⊗ CR). Filtration SS is
Ep,q0 = πq(X ⊗R⊗p+1)⇒ πqX

∧
R; this is the R-based ANSS.
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Synthetic spectra (cont.)
Question
SyR S has generic fiber S∧R, what is special fiber SyR S⊗ C(σ)?.

Flatness
If R∗R is flat over R∗, then

1 (R∗, R∗R) is a Hopf algebroid;
2 π∗CR = cobar complex for cohomology of (R∗, R∗R).

Thus SyR S⊗ C(σ) = graded cohomology spectrum of (R∗, R∗R).

Consequence
For R∗R flat, LModSyR S⊗C(σ) is a htpy theory of (R∗, R∗R)-comodules.

Question
Exactly which homotopy theory is LModSyR S⊗C(σ)?
(Is LModSyR S⊗C(σ) ' Stable(R∗,R∗R)?)
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F2-synthetic spectra SpF2
Example: 0-stem

1 Have F2[h0] = 0-stem of ExtA(F2,F2);
2 h0 detects 2, i.e. hidden extension 2: 1→ h0;
3 get π0,∗ SyF2 S = Z2[σ, h0]/(σ · h0 = 2); this is also π∗,∗ SyF2 HZ.

Some computations
1 Burklund-Hahn-Senger (2019, 2020) compute Toda range
π≤19,∗ SyF2 S, give applications to manifold geometry, ...;

2 Burklund (2020) uses SyF2 S to get last 2-extension in π≤80S;
3 Burklund-Isaksen-Xu (forthcoming) compute lots of π∗,∗ SyF2 S.

Remark
Also possible to define unstable Fp-synthetic objects Syun

Fp
X.

Problem: study synthetic J-homomorphism π∗,∗ Syun
Fp
SO → π∗,∗ SyFp

S.

Question
What does chromatic homotopy theory in SpFp look like?
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 32 / 35
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MU -synthetic spectra and C-motivic homotopy
MU -synthetic category SpMU as a deformation
Generic fiber Sp and special fiber ≈ (MU∗,MU∗MU)-comodules.

Even objects
Let Speven

MU = X with X(2n) = X(2n+ 1); then SyMU S ∈ Speven
MU .

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)
If we p-complete, there is an equivalence of categories Syeven

MU ' Spcell
C .

Application (Gheorghe-Isaksen-Krause-Ricka 2018)
SyMU (tmf) gives C-motivic tmf with good computational properties.

Side question
Is there a good unstable MU -synthetic category?

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 33 / 35
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MU -synthetic spectra and the Adams SS

Question
Even if SyMU S may be useful, why bother with SpMU?

One answer
General tools for Sp upgrade to tools for SpMU .

The MU -synthetic Steenrod algebra
Have SyMU HF2, giving MU -synthetic Steenrod algebra AMU ; in fact

AMU = AC[σ]/(σ2 = τ).

This is a deformation of A, i.e. AMU [σ−1] = A⊗ Z[σ±1].

MU -synthetic Adams SS
Get e.g. Adams SS H∗(AMU )⇒ π∗,∗ SyMU S.

William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 34 / 35
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Utility of the MU -synthetic Adams SS
The Miller square
Have a square of spectral sequences:

H∗(AMU/(σ))[σ] H∗(AMU )

π∗ SyMU S/(σ)[σ] π∗ SyMU S

σ-BSS

SyMU -ASS SyMU -ASS

σ-BSS

.

1 By construction, bottom is the Adams-Novikov SS;
2 Right is a deformation returning classic ASS after inverting σ;
3 Left turns out to be algebraic Novikov SS;
4 Question: is top the CESS for frobenius extension A∨ → A∨?

Used (Isaksen-Wang-Xu 2020 with SC) to compute π∗S to 90-stem.
Problem
Compute the 2-parameter deformation “π∗,∗,∗ SySyMU F2(SyMU S)”.
This fully combines Adams filtration and Adams-Novikov filtration.
William Balderrama (UIUC) Synthetic homotopy February 8+15, 2021 35 / 35
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