Deformations of homotopy theories

William Balderrama

University of Illinois at Urbana-Champaign

https://faculty.math.illinois.edu/~balderr2/

February 8+15, 2021

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021

Intro

Big goal

Compute the stable homotopy groups of the sphere spectrum.

Recent breakthrough technique

Compute the stable homotopy groups of *other* sphere spectra.

Form of the technique

- These other sphere spectra are often *deformations* of S; modules over them give deformations of Sp.
- Studying these deformations can reveal otherwise hidden information about classical homotopy theory.

Intro

Big goal

Compute the stable homotopy groups of the sphere spectrum.

Recent breakthrough technique

Compute the stable homotopy groups of *other* sphere spectra.

Form of the technique

• These other sphere spectra are often *deformations* of S; modules over them give deformations of Sp.

Studying these deformations can reveal otherwise hidden information about classical homotopy theory.

Intro

Big goal

Compute the stable homotopy groups of the sphere spectrum.

Recent breakthrough technique

Compute the stable homotopy groups of *other* sphere spectra.

Form of the technique

- These other sphere spectra are often *deformations* of S; modules over them give deformations of Sp.
- Studying these deformations can reveal otherwise hidden information about classical homotopy theory.

A square in need of a catchy name

The standard context

$$\begin{array}{ccc} & & & & & & \\ & & & & \\ Sp_{\mathbb{R}} & \stackrel{Be}{\longrightarrow} & Sp_{C_2} & \stackrel{\Phi}{\longrightarrow} & Sp \\ & & & & \downarrow_U \\ & & & & \\ & & & Sp_{\mathbb{C}} & \stackrel{Be}{\longrightarrow} & Sp \end{array}$$

Studying these categories together reveals otherwise obscured insights.

No motivic knowledge is needed for this talk.

Some work (highly non-exhaustive)

- **1** Isaksen-Wang-Xu (2020): use $\mathbb{S}_{\mathbb{C}}$ to compute $\pi_*\mathbb{S}_2$ into 90-stem;
- ⁽²⁾ Belmont-Isaksen (2020) compute $\pi_* \mathbb{S}_{\mathbb{R}}$, Guillou-Isaksen-? (tbd) compute $\pi_* \mathbb{S}_{C_2}$; these give e.g. root invariants in $\pi_* \mathbb{S}$;
- Other contexts: Wilson-Østvær (2016) compute \mathbb{F}_q -motivic stems, Burklund-(Hahn-Senger,Isaksen-Xu) (2019,tbd): \mathbb{F}_2 -synthetic π_* ;
- Add your name: there are many more things to compute.

William Balderrama (UIUC)

Synthetic homotopy

A square in need of a catchy name

The standard context

$$\begin{array}{ccc} & & & & & & \\ & & & & \\ Sp_{\mathbb{R}} & \stackrel{Be}{\longrightarrow} & Sp_{C_2} & \stackrel{\Phi}{\longrightarrow} & Sp \\ & & & & \downarrow_U \\ & & & & \\ & & & Sp_{\mathbb{C}} & \stackrel{Be}{\longrightarrow} & Sp \end{array}$$

Studying these categories together reveals otherwise obscured insights.

No motivic knowledge is needed for this talk.

Some work (highly non-exhaustive)

- **()** Isaksen-Wang-Xu (2020): use $\mathbb{S}_{\mathbb{C}}$ to compute $\pi_*\mathbb{S}_2$ into 90-stem;
- ❷ Belmont-Isaksen (2020) compute $\pi_* S_ℝ$, Guillou-Isaksen-? (tbd) compute $\pi_* S_{C_2}$; these give e.g. root invariants in $\pi_* S$;
- Other contexts: Wilson-Østvær (2016) compute \mathbb{F}_q -motivic stems, Burklund-(Hahn-Senger,Isaksen-Xu) (2019,tbd): \mathbb{F}_2 -synthetic π_∗;
- **4** Add your name: there are many more things to compute.

William Balderrama (UIUC)

Synthetic homotopy

Work at a prime p.

Theorem (Pstrągowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element $\tau \in \pi_* \mathbb{S}_{\mathbb{C}}$, and:

• $\mathbb{S}_{\mathbb{C}}/(\tau)$ is \mathbb{E}_{∞} , with $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau) = \operatorname{Ext}_{(MU_*, MU_*MU)}(MU_*, MU_*)$ and

 $\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}/(\tau)} \approx \operatorname{even} MU_*MU$ -comodules.

 $\mathfrak{S}_{\mathbb{C}}[\tau^{-1}]$ is more easily \mathbb{E}_{∞} , with $\pi_* \mathbb{S}_{\mathbb{C}}[\tau^{-1}] = \pi_* \mathbb{S} \otimes \mathbb{Z}[\tau^{\pm 1}]$,

 $\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}[\tau^{-1}]} = \operatorname{Sp}.$

3 The τ -inverted τ -BSS $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau)[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}[\tau^{\pm 1}]$ is the ANSS. Thus $\mathbb{Sp}_{\mathbb{C}}^{\text{cell}}$ is a *deformation* with generic fiber \mathbb{Sp} , algebraic special fiber, and deformation data = Adams-Novikov data.

Work at a prime p.

Theorem (Pstrągowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element $\tau \in \pi_* \mathbb{S}_{\mathbb{C}}$, and:

• $\mathbb{S}_{\mathbb{C}}/(\tau)$ is \mathbb{E}_{∞} , with $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau) = \operatorname{Ext}_{(MU_*, MU_*MU)}(MU_*, MU_*)$ and

$\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}/(\tau)} \approx \operatorname{even} MU_*MU$ -comodules.

② $S_{\mathbb{C}}[\tau^{-1}]$ is more easily \mathbb{E}_{∞} , with $\pi_*S_{\mathbb{C}}[\tau^{-1}] = \pi_*S \otimes \mathbb{Z}[\tau^{\pm 1}]$,

 $\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}[\tau^{-1}]} = \operatorname{Sp}.$

3 The τ -inverted τ -BSS $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau)[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}[\tau^{\pm 1}]$ is the ANSS. Thus $\mathbb{Sp}_{\mathbb{C}}^{\text{cell}}$ is a *deformation* with generic fiber $\mathbb{S}_{\mathbb{P}}$, algebraic special fiber, and deformation data = Adams-Novikov data.

Work at a prime p.

Theorem (Pstrągowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element $\tau \in \pi_* \mathbb{S}_{\mathbb{C}}$, and:

• $\mathbb{S}_{\mathbb{C}}/(\tau)$ is \mathbb{E}_{∞} , with $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau) = \operatorname{Ext}_{(MU_*, MU_*MU)}(MU_*, MU_*)$ and

 $\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}/(\tau)} \approx \operatorname{even} MU_*MU$ -comodules.

 $S_{\mathbb{C}}[\tau^{-1}] \text{ is more easily } \mathbb{E}_{\infty}, \text{ with } \pi_* S_{\mathbb{C}}[\tau^{-1}] = \pi_* S \otimes \mathbb{Z}[\tau^{\pm 1}],$

$$\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}[\tau^{-1}]} = \operatorname{Sp}.$$

3 The τ -inverted τ -BSS $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau)[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}[\tau^{\pm 1}]$ is the ANSS. Thus $\mathbb{Sp}_{\mathbb{C}}^{\text{cell}}$ is a *deformation* with generic fiber \mathbb{Sp} , algebraic special fiber, and deformation data = Adams-Novikov data.

Work at a prime p.

Theorem (Pstrągowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element $\tau \in \pi_* \mathbb{S}_{\mathbb{C}}$, and:

• $\mathbb{S}_{\mathbb{C}}/(\tau)$ is \mathbb{E}_{∞} , with $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau) = \operatorname{Ext}_{(MU_*, MU_*MU)}(MU_*, MU_*)$ and

 $\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}/(\tau)} \approx \operatorname{even} MU_*MU$ -comodules.

 $\ \, {\mathbb S}_{\mathbb C}[\tau^{-1}] \text{ is more easily } {\mathbb E}_{\infty}, \text{ with } \pi_* {\mathbb S}_{\mathbb C}[\tau^{-1}] = \pi_* {\mathbb S} \otimes {\mathbb Z}[\tau^{\pm 1}],$

$$\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}[\tau^{-1}]} = \operatorname{Sp}.$$

3 The τ -inverted τ -BSS $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau)[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}[\tau^{\pm 1}]$ is the ANSS. Thus $\mathbb{Sp}_{\mathbb{C}}^{\text{cell}}$ is a *deformation* with generic fiber $\mathbb{S}_{\mathbb{P}}$, algebraic special fiber, and deformation data = Adams-Novikov data.

Work at a prime p.

Theorem (Pstrągowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element $\tau \in \pi_* \mathbb{S}_{\mathbb{C}}$, and:

• $\mathbb{S}_{\mathbb{C}}/(\tau)$ is \mathbb{E}_{∞} , with $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau) = \operatorname{Ext}_{(MU_*, MU_*MU)}(MU_*, MU_*)$ and

 $\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}/(\tau)} \approx \operatorname{even} MU_*MU$ -comodules.

 $\ \, {\mathbb S}_{\mathbb C}[\tau^{-1}] \text{ is more easily } {\mathbb E}_{\infty}, \text{ with } \pi_* {\mathbb S}_{\mathbb C}[\tau^{-1}] = \pi_* {\mathbb S} \otimes {\mathbb Z}[\tau^{\pm 1}],$

$$\operatorname{Mod}_{\mathbb{S}_{\mathbb{C}}[\tau^{-1}]} = \operatorname{Sp}.$$

3 The τ -inverted τ -BSS $\pi_* \mathbb{S}_{\mathbb{C}}/(\tau)[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}[\tau^{\pm 1}]$ is the ANSS. Thus $\mathbb{Sp}_{\mathbb{C}}^{\text{cell}}$ is a *deformation* with generic fiber \mathbb{Sp} , algebraic special fiber, and deformation data = Adams-Novikov data.

Goal of talk

Idea

For computations of stable stems, the motivic stuff is a red herring:

- Can directly define a " \mathbb{S}_{MU} " with $\mathbb{S}_{PMU} := \mathbb{M}_{Od}_{\mathbb{S}_{MU}} \approx \mathbb{S}_{\mathbb{P}_{C}}$;
- **2** Have deformations \mathbb{S}_R and \mathbb{S}_P from other *R*-based Adams SS's;
- **③** Generally, deformations come anywhere spectral sequences come.

Goal

Explain the filtered object approach to building deformations.

Outline

- Ordinary filtered algebras as deformations;
- 2 Spectral sequences and deformations;
- ³ Various examples.

Goal of talk

Idea

For computations of stable stems, the motivic stuff is a red herring:

- Can directly define a " \mathbb{S}_{MU} " with $\mathbb{S}_{PMU} := \mathbb{M}_{Od}_{\mathbb{S}_{MU}} \approx \mathbb{S}_{\mathbb{P}_{C}}$;
- **2** Have deformations \mathbb{S}_R and \mathbb{S}_P from other *R*-based Adams SS's;
- **③** Generally, deformations come anywhere spectral sequences come.

Goal

Explain the filtered object approach to building deformations.

Outline

- Ordinary filtered algebras as deformations;
- Spectral sequences and deformations;
- Over the second seco

Goal of talk

Idea

For computations of stable stems, the motivic stuff is a red herring:

- Can directly define a " \mathbb{S}_{MU} " with $\mathbb{S}_{PMU} := \mathbb{M}_{Od}_{\mathbb{S}_{MU}} \approx \mathbb{S}_{\mathbb{P}_{C}}$;
- **2** Have deformations \mathbb{S}_R and \mathbb{S}_P from other *R*-based Adams SS's;
- **③** Generally, deformations come anywhere spectral sequences come.

Goal

Explain the filtered object approach to building deformations.

Outline

- Ordinary filtered algebras as deformations;
- Spectral sequences and deformations;
- Output State St

Filtered objects: lots of definitions Fix a category \mathcal{C} .

Definition: Filtered objects

The category $\mathfrak{C}_{\text{Filt}}$ of *filtered objects* in \mathfrak{C} is the category of functors $X : (\mathbb{Z}, <) \to \mathfrak{C}$:

$$\cdots \to X(-1) \to X(0) \to X(1) \to \cdots$$

Definition: Day convolution of filtered objects

For \mathcal{C} monoidal with suitable colimits, $\mathcal{C}_{\text{Filt}}$ has monoidal product

 $(X \otimes Y)(n) = \operatorname{colim}_{p+q \le n} X(p) \otimes Y(q).$

Definition: Filtered algebras

Monoids in C_{Filt} are *filtered algebras*. E.g. when $C = \operatorname{Mod}_k$, get filtered *k*-algebras: $A = \operatorname{colim}_n A_{\leq n}$ with $A_{\leq n} \otimes A_{\leq m} \to A_{\leq n+m}$.

William Balderrama (UIUC)

Synthetic homotopy

Filtered objects: lots of definitions Fix a category \mathcal{C} .

Definition: Filtered objects

The category $\mathfrak{C}_{\text{Filt}}$ of *filtered objects* in \mathfrak{C} is the category of functors $X : (\mathbb{Z}, <) \to \mathfrak{C}$:

$$\cdots \to X(-1) \to X(0) \to X(1) \to \cdots$$

Definition: Day convolution of filtered objects

For ${\mathfrak C}$ monoidal with suitable colimits, ${\mathfrak C}_{\rm Filt}$ has monoidal product

$$(X \otimes Y)(n) = \operatorname{colim}_{p+q \le n} X(p) \otimes Y(q).$$

Definition: Filtered algebras

Monoids in C_{Filt} are *filtered algebras*. E.g. when $C = \operatorname{Mod}_k$, get filtered *k*-algebras: $A = \operatorname{colim}_n A_{\leq n}$ with $A_{\leq n} \otimes A_{\leq m} \to A_{\leq n+m}$.

Filtered objects: lots of definitions Fix a category \mathcal{C} .

Definition: Filtered objects

The category $\mathfrak{C}_{\text{Filt}}$ of *filtered objects* in \mathfrak{C} is the category of functors $X : (\mathbb{Z}, <) \to \mathfrak{C}$:

$$\cdots \to X(-1) \to X(0) \to X(1) \to \cdots$$

Definition: Day convolution of filtered objects

For ${\mathfrak C}$ monoidal with suitable colimits, ${\mathfrak C}_{\rm Filt}$ has monoidal product

$$(X \otimes Y)(n) = \operatorname{colim}_{p+q \le n} X(p) \otimes Y(q).$$

Definition: Filtered algebras

Monoids in $\mathcal{C}_{\text{Filt}}$ are *filtered algebras*. E.g. when $\mathcal{C} = \operatorname{Mod}_k$, get filtered *k*-algebras: $A = \operatorname{colim}_n A_{\leq n}$ with $A_{\leq n} \otimes A_{\leq m} \to A_{\leq n+m}$.

Filtered objects as graded objects

Observation

There is an equivalence of categories

Sy: Fun(\mathbb{Z} , L Mod_k) \simeq L $Mod_{k[\sigma]}$, $|\sigma| = 1$,

where $LMod_{k[\sigma]} = \text{graded } k[\sigma]\text{-modules, given by}$

$$(\operatorname{Sy} M)_n = M_{\leq n}, \qquad \sigma \colon M_{\leq n} \to M_{\leq n+1}.$$

This is sym. monoidal for k commutative (and works more generally).

Filtered algebras as deformations

If $A = \operatorname{colim}_n A_{\leq n}$ is a filtered algebra, then

- $(Sy A)/(\sigma) = gr A,$
- $(Sy A)[\sigma^{-1}] = A \otimes \mathbb{Z}[\sigma^{\pm 1}]$

Sy A is a *deformation* with generic fiber $A[\sigma^{\pm 1}]$ and special fiber gr A.

Filtered objects as graded objects

Observation

There is an equivalence of categories

Sy: Fun(
$$\mathbb{Z}$$
, L Mod_k) \simeq L $Mod_{k[\sigma]}$, $|\sigma| = 1$,

where $LMod_{k[\sigma]} = \text{graded } k[\sigma]\text{-modules, given by}$

$$(\operatorname{Sy} M)_n = M_{\leq n}, \qquad \sigma \colon M_{\leq n} \to M_{\leq n+1}.$$

This is sym. monoidal for k commutative (and works more generally).

Filtered algebras as deformations

If $A = \operatorname{colim}_n A_{\leq n}$ is a filtered algebra, then

$$(Sy A)/(\sigma) = gr A,$$

$$(Sy A)[\sigma^{-1}] = A \otimes \mathbb{Z}[\sigma^{\pm 1}]$$

Sy A is a *deformation* with generic fiber $A[\sigma^{\pm 1}]$ and special fiber gr A.

Categorification

Filtered modules as a deformation

The category $LMod_{SyA}$ fits into a span

$$\mathrm{LMod}_{\mathrm{gr}\,A} \xleftarrow{\sigma \mapsto 0} \mathrm{LMod}_{\mathrm{Sy}\,A} \xrightarrow{\sigma \mapsto 1} \mathrm{LMod}_A ,$$

exhibiting Sy A-modules as a *deformation* with generic fiber $LMod_A$ and special fiber $LMod_{gr A}$.

Remark

If $LMod_A^{Filt} = filtered A-modules$, span is equivalent to

$$\mathrm{LMod}_{\mathrm{gr}\,A} \xleftarrow{\mathrm{gr}} \mathrm{LMod}_{A}^{\mathrm{Filt}} \xrightarrow{\mathrm{colim}} \mathrm{LMod}_{A}$$

Categorification

Filtered modules as a deformation

The category $LMod_{SyA}$ fits into a span

$$\mathrm{LMod}_{\mathrm{gr}\,A} \xleftarrow{\sigma \mapsto 0} \mathrm{LMod}_{\mathrm{Sy}\,A} \xrightarrow{\sigma \mapsto 1} \mathrm{LMod}_A$$
,

exhibiting Sy A-modules as a *deformation* with generic fiber $LMod_A$ and special fiber $LMod_{gr A}$.

Remark

If $LMod_A^{Filt}$ = filtered A-modules, span is equivalent to

$$\mathrm{LMod}_{\mathrm{gr}\,A} \xleftarrow{\mathrm{gr}} \mathrm{LMod}_A^{\mathrm{Filt}} \xrightarrow{\mathrm{colim}} \mathrm{LMod}_A$$
.

The \mathbb{C} -motivic Steenrod algebra

The classic Steenrod algebra

 \mathcal{A} is the \mathbb{F}_2 -algebra given by:

- Generators: Sq^r for $r \ge 0$, with $|\operatorname{Sq}^r| = -r$ and $\operatorname{Sq}^0 = 1$;
- 2 Relations: $\operatorname{Sq}^{2s-r-1}\operatorname{Sq}^s = \sum_i {\binom{r-i-1}{i}}\operatorname{Sq}^{2s-1-i}\operatorname{Sq}^{s-r+i}$ for $r \ge 0$.

The C-motivic Steenrod algebra

 $\mathcal{A}_{\mathbb{C}}$ is the $\mathbb{F}_2[\tau]$ -algebra, with $|\tau| = (0, -1)$, given by:

- Generators: Sq^r for $r \ge 0$, with $|Sq^r| = -(r, \lfloor \frac{r}{2} \rfloor)$ and Sq⁰ = 1;
- Relations: Sq^{2s-r-1}Sq^s = ∑_i $\binom{r-i-1}{i} \tau^{?}$ Sq^{2s-1-i}Sq^{s-r+1} for r ≥ 0, where ? ∈ {0,1} fixes degrees.

The \mathbb{C} -motivic Steenrod algebra

The classic Steenrod algebra

 ${\mathcal A}$ is the ${\mathbb F}_2\text{-algebra given by:}$

- Generators: Sq^r for $r \ge 0$, with $|\operatorname{Sq}^r| = -r$ and $\operatorname{Sq}^0 = 1$;
- **2** Relations: $\operatorname{Sq}^{2s-r-1}\operatorname{Sq}^s = \sum_i {\binom{r-i-1}{i}}\operatorname{Sq}^{2s-1-i}\operatorname{Sq}^{s-r+i}$ for $r \ge 0$.

The \mathbb{C} -motivic Steenrod algebra

 $\mathcal{A}_{\mathbb{C}}$ is the $\mathbb{F}_2[\tau]$ -algebra, with $|\tau| = (0, -1)$, given by:

- Generators: Sq^r for $r \ge 0$, with $|Sq^r| = -(r, \lfloor \frac{r}{2} \rfloor)$ and Sq⁰ = 1;
- Relations: Sq^{2s-r-1}Sq^s = ∑_i $\binom{r-i-1}{i} \tau^{2}$ Sq^{2s-1-i}Sq^{s-r+1} for r ≥ 0, where ? ∈ {0,1} fixes degrees.

The $\mathbb C\text{-}\mathrm{motivic}$ Steenrod algebra as a deformation

Last slide

 $\mathcal{A}_{\mathbb{C}}$ is the same as \mathcal{A} , except generators have an extra bidegree, and have a τ to make relations homogeneous.

A filtration

Define the *weight filtration* on \mathcal{A} by

$$\mathcal{A}_{\leq n} = \{ \operatorname{Sq}^{I} : I = (r_1, \dots, r_n) \text{ with } \Sigma_i \lfloor \frac{r_i}{2} \rfloor \leq n \} \subset \mathcal{A}.$$

Then with respect to this filtration we have

$$\operatorname{Sy} \mathcal{A} = \mathcal{A}_{\mathbb{C}} \qquad (\sigma \leftrightarrow \tau).$$

Side questions

 Is there a more conceptual explanation for this filtration? (Idea: want it to be related to the Frobenius on A_{*}).

Similarly $\mathcal{A}_{\mathbb{R}} = Sy(\mathcal{A}_{\mathbb{R}}/(\rho = 1))$; is $\mathcal{A}_{\mathbb{R}}/(\rho = 1)$ recognizable?

The $\mathbb C\text{-}\mathrm{motivic}$ Steenrod algebra as a deformation

Last slide

 $\mathcal{A}_{\mathbb{C}}$ is the same as \mathcal{A} , except generators have an extra bidegree, and have a τ to make relations homogeneous.

A filtration

Define the *weight filtration* on \mathcal{A} by

$$\mathcal{A}_{\leq n} = \{ \mathrm{Sq}^{I} : I = (r_1, \dots, r_n) \text{ with } \Sigma_i \lfloor \frac{r_i}{2} \rfloor \leq n \} \subset \mathcal{A}.$$

Then with respect to this filtration we have

$$\operatorname{Sy} \mathcal{A} = \mathcal{A}_{\mathbb{C}} \qquad (\sigma \leftrightarrow \tau).$$

Side questions

• Is there a more conceptual explanation for this filtration? (Idea: want it to be related to the Frobenius on \mathcal{A}_*).

Similarly $\mathcal{A}_{\mathbb{R}} = Sy(\mathcal{A}_{\mathbb{R}}/(\rho = 1))$; is $\mathcal{A}_{\mathbb{R}}/(\rho = 1)$ recognizable?

The $\mathbb C\text{-}\mathrm{motivic}$ Steenrod algebra as a deformation

Last slide

 $\mathcal{A}_{\mathbb{C}}$ is the same as \mathcal{A} , except generators have an extra bidegree, and have a τ to make relations homogeneous.

A filtration

Define the *weight filtration* on \mathcal{A} by

$$\mathcal{A}_{\leq n} = \{ \mathrm{Sq}^{I} : I = (r_1, \dots, r_n) \text{ with } \Sigma_i \lfloor \frac{r_i}{2} \rfloor \leq n \} \subset \mathcal{A}.$$

Then with respect to this filtration we have

$$\operatorname{Sy} \mathcal{A} = \mathcal{A}_{\mathbb{C}} \qquad (\sigma \leftrightarrow \tau).$$

Side questions

- Is there a more conceptual explanation for this filtration? (Idea: want it to be related to the Frobenius on A_{*}).
- Similarly $\mathcal{A}_{\mathbb{R}} = Sy(\mathcal{A}_{\mathbb{R}}/(\rho = 1))$; is $\mathcal{A}_{\mathbb{R}}/(\rho = 1)$ recognizable?

SS for the cohomology of a filtered algebra

Fix A = augmented k-algebra (maybe add finiteness), k a field.

Definition: cohomology algebra

The cohomology algebra $H^*(A)$ can be defined as:

 $H^*(A) = \operatorname{Ext}_A^*(k,k) = H_*C_A, \qquad C_A^n = \operatorname{Mod}_k(I(A)^{\otimes_k n},k).$

Now say $A = \operatorname{colim}_n A_{\leq n}$ filtered by subalgebras.

The filtration spectral sequence

Filtration on A gives filtration $C_A = \lim_m C_A \leq m$ by

$$C_A^n[\leq m] = \ker \left(C_A^n[\leq m] \to \operatorname{Mod}_k(\sum_{r_1 + \dots + r_n \leq m} A_{\leq r_1} \otimes \dots \otimes A_{\leq r_m}, k) \right)$$

This satisfies gr $C_A = C_{\text{gr}A}$, therefore giving the *filtration SS*

$$^{\mathrm{Filt}}E_1 = H^*(\mathrm{gr}\,A) \Rightarrow H^*(A).$$

William Balderrama (UIUC)

Synthetic homotopy

SS for the cohomology of a filtered algebra

Fix A = augmented k-algebra (maybe add finiteness), k a field.

Definition: cohomology algebra

The cohomology algebra $H^*(A)$ can be defined as:

$$H^*(A) = \operatorname{Ext}_A^*(k,k) = H_*C_A, \qquad C_A^n = \operatorname{Mod}_k(I(A)^{\otimes_k n},k).$$

Now say $A = \operatorname{colim}_n A_{\leq n}$ filtered by subalgebras.

The filtration spectral sequence

Filtration on A gives filtration $C_A = \lim_m C_A [\leq m]$ by

$$C_A^n[\leq m] = \ker\left(C_A^n[\leq m] \to \operatorname{Mod}_k(\sum_{r_1 + \dots + r_n \leq m} A_{\leq r_1} \otimes \dots \otimes A_{\leq r_m}, k)\right).$$

This satisfies $\operatorname{gr} C_A = C_{\operatorname{gr} A}$, therefore giving the *filtration SS*

$$\operatorname{Filt} E_1 = H^*(\operatorname{gr} A) \Rightarrow H^*(A).$$

SS for the cohomology of a deformation From A, extract Sy A.

Definition: cohomology algebra

The cohomology algebra $H^*(Sy A)$ is defined as

$$H^*(\operatorname{Sy} A) = \operatorname{Ext}^*_{\operatorname{Sy} A}(k[\sigma], k[\sigma]) = \pi_{-*} \operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k[\sigma]).$$

The Bockstein spectral sequence

Have a filtration

$$\operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k[\sigma]) = \lim_{n} \operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k[\sigma]/(\sigma^{n})),$$

fibers are

$$\operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k\{\sigma^n\}) \simeq \operatorname{Ext}_{\operatorname{Sy} A/(\sigma)}(k, k).$$

This gives the σ -Bockstein spectral sequence

$${}^{\mathrm{BSS}}E_1 = H^*(\operatorname{Sy} A/(\sigma))[\sigma] \Rightarrow H^*(\operatorname{Sy} A).$$

SS for the cohomology of a deformation From A, extract Sy A.

Definition: cohomology algebra

The cohomology algebra $H^*(Sy A)$ is defined as

$$H^*(\operatorname{Sy} A) = \operatorname{Ext}^*_{\operatorname{Sy} A}(k[\sigma], k[\sigma]) = \pi_{-*} \operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k[\sigma]).$$

The Bockstein spectral sequence

Have a filtration

$$\operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k[\sigma]) = \lim_{n} \operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k[\sigma]/(\sigma^{n})),$$

fibers are

$$\operatorname{Ext}_{\operatorname{Sy} A}(k[\sigma], k\{\sigma^n\}) \simeq \operatorname{Ext}_{\operatorname{Sy} A/(\sigma)}(k, k).$$

This gives the σ -Bockstein spectral sequence

$${}^{\mathrm{BSS}}E_1 = H^*(\operatorname{Sy} A/(\sigma))[\sigma] \Rightarrow H^*(\operatorname{Sy} A).$$

But filtered algebras and deformations are the same

Last two slides

Have the filtration SS and Bockstein SS:

^{Filt}
$$E_1 = H^*(\operatorname{gr} A) \Rightarrow H^*(A);$$

^{BSS} $E_1 = H^*(\operatorname{Sy} A/(\sigma))[\sigma] \Rightarrow H^*(\operatorname{Sy} A).$

Remember Sy $A/(\sigma) = \operatorname{gr} A$.

Theorem

There is an isomorphism of spectral sequences

 $^{\mathrm{BSS}}E_r[\sigma^{-1}] \cong {}^{\mathrm{Filt}}E_r \otimes \mathbb{Z}[\sigma^{\pm 1}].$

Upshot

As ${}^{\text{BSS}}E_1$ is free over $k[\sigma]$, inverting σ loses no information. Thus the BSS and Filtration SS carry the same information.

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021

But filtered algebras and deformations are the same

Last two slides

Have the filtration SS and Bockstein SS:

^{Filt}
$$E_1 = H^*(\operatorname{gr} A) \Rightarrow H^*(A);$$

^{BSS} $E_1 = H^*(\operatorname{Sy} A/(\sigma))[\sigma] \Rightarrow H^*(\operatorname{Sy} A).$

Remember Sy $A/(\sigma) = \operatorname{gr} A$.

Theorem

There is an isomorphism of spectral sequences

$$^{\mathrm{BSS}}E_r[\sigma^{-1}] \cong {}^{\mathrm{Filt}}E_r \otimes \mathbb{Z}[\sigma^{\pm 1}].$$

Upshot

As ${}^{\text{BSS}}E_1$ is free over $k[\sigma]$, inverting σ loses no information. Thus the BSS and Filtration SS carry the same information.

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021

But filtered algebras and deformations are the same

Last two slides

Have the filtration SS and Bockstein SS:

^{Filt}
$$E_1 = H^*(\operatorname{gr} A) \Rightarrow H^*(A);$$

^{BSS} $E_1 = H^*(\operatorname{Sy} A/(\sigma))[\sigma] \Rightarrow H^*(\operatorname{Sy} A).$

Remember Sy $A/(\sigma) = \operatorname{gr} A$.

Theorem

There is an isomorphism of spectral sequences

^{BSS}
$$E_r[\sigma^{-1}] \cong$$
^{Filt} $E_r \otimes \mathbb{Z}[\sigma^{\pm 1}].$

Upshot

As ${}^{\text{BSS}}E_1$ is free over $k[\sigma]$, inverting σ loses no information. Thus the BSS and Filtration SS carry the same information.

Cohomology of a deformation

Interpretation of theorem

As we're over a field, H*(Sy A) = ^{BSS}E_∞ as k[σ]-modules;
By construction, ^{BSS}d_r-differentials are those d^r(x) = σ^ry;
By ^{BSS}d_r ↔ ^{Filt}d_r, find

 $H^*(\operatorname{Sy} A) = (\operatorname{^{\operatorname{Filt}}} Z_{\infty} \otimes \mathbb{Z}[\sigma]) / (\sigma^r \cdot \operatorname{^{\operatorname{Filt}}} d^r(x) = 0 : x \in \operatorname{^{\operatorname{Filt}}} Z_r).$

So additively $H^*(Sy A)$ may be read off the filtration spectral sequence.

When not over a field, just have more extension problems.

Cohomology as a deformation

• Have
$$H^*(\operatorname{Sy} A)[\sigma^{-1}] = H^*(A) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

2 Have an edge map $H^*(\operatorname{Sy} A)/(\sigma) \to \operatorname{Filt} E_{\infty}$ (not iso).

Cohomology of a deformation

Interpretation of theorem

As we're over a field, H*(Sy A) = ^{BSS}E_∞ as k[σ]-modules;
By construction, ^{BSS}d_r-differentials are those d^r(x) = σ^ry;
By ^{BSS}d_r ↔ ^{Filt}d_r, find

$$H^*(\operatorname{Sy} A) = (\operatorname{^{Filt}} Z_{\infty} \otimes \mathbb{Z}[\sigma]) / (\sigma^r \cdot \operatorname{^{Filt}} d^r(x) = 0 : x \in \operatorname{^{Filt}} Z_r).$$

So additively $H^*(Sy A)$ may be read off the filtration spectral sequence.

When not over a field, just have more extension problems.

Cohomology as a deformation

• Have
$$H^*(\operatorname{Sy} A)[\sigma^{-1}] = H^*(A) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

2 Have an edge map $H^*(\operatorname{Sy} A)/(\sigma) \to {}^{\operatorname{Filt}}E_{\infty}$ (not iso).

Where the magic happens

Last slide

Can read additive structure of $H^*(Sy A)$ off SS $H^*(gr A) \Rightarrow H^*(A)$.

Key observation

The multiplicative (and higher) structure of $H^*(Sy A)$ tracks higher structure of the filtration SS, such as extension problems.

Examples

- A relation $x \cdot y = \sigma \cdot z$ in $H^*(Sy A)$ gives:

 - **2** A relation $x \cdot y = z$ in $H^*(A)$;

so describes a *hidden multiplicative extension* in the filtration SS.

2 Mixed relations (e.g. $x \cdot y = w + \sigma \cdot z$), Massey products, etc. track more complicated distinctions between $^{\text{Filt}}E_{\infty}$ and $H^*(A)$.

 $H^*(Sy A)$ encodes the *full process* of computing with the filtration SS.

William Balderrama (UIUC)

Synthetic homotopy
Where the magic happens

Last slide

Can read additive structure of $H^*(Sy A)$ off SS $H^*(gr A) \Rightarrow H^*(A)$.

Key observation

The multiplicative (and higher) structure of $H^*(Sy A)$ tracks higher structure of the filtration SS, such as extension problems.

Examples

1 A relation $x \cdot y = \sigma \cdot z$ in $H^*(Sy A)$ gives:

• A relation $x \cdot y = 0$ in $^{\text{Filt}}E_{\infty}$;

2 A relation $x \cdot y = z$ in $H^*(A)$;

so describes a hidden multiplicative extension in the filtration SS.

2 Mixed relations (e.g. $x \cdot y = w + \sigma \cdot z$), Massey products, etc. track more complicated distinctions between $^{\text{Filt}}E_{\infty}$ and $H^*(A)$.

 $H^*(Sy A)$ encodes the *full process* of computing with the filtration SS.

William Balderrama (UIUC)

Where the magic happens

Last slide

Can read additive structure of $H^*(Sy A)$ off SS $H^*(gr A) \Rightarrow H^*(A)$.

Key observation

The multiplicative (and higher) structure of $H^*(Sy A)$ tracks higher structure of the filtration SS, such as extension problems.

Examples

- A relation $x \cdot y = \sigma \cdot z$ in $H^*(Sy A)$ gives:
 - A relation $x \cdot y = 0$ in ^{Filt} E_{∞} ;
 - $a relation x \cdot y = z in H^*(A);$

so describes a hidden multiplicative extension in the filtration SS.

2 Mixed relations (e.g. $x \cdot y = w + \sigma \cdot z$), Massey products, etc. track more complicated distinctions between $^{\text{Filt}}E_{\infty}$ and $H^*(A)$.

 $H^*(\operatorname{Sy} A)$ encodes the $full\ process$ of computing with the filtration SS.

William Balderrama (UIUC)

Question

If $H^*(Sy A)$ just describes the filtration SS, why bother with it?

Recall $\mathcal{A} =$ Steenrod algebra, $\mathcal{A}_{\mathbb{C}} =$ Sy \mathcal{A} for a suitable filtration.

The first Hopf element

- Have $h_1 \in H^1(\mathcal{A})$. Have $h_1^4 = 0$, so $H^*(\mathcal{A})[h_1^{-1}] = 0$.
- \bigcirc Lifts to $h_1 \in H^1(\mathcal{A}_{\mathbb{C}})$; now $h_1^4 \neq 0$, instead just $\tau \cdot h_1^4 = 0$.

Theorem (Guillou-Isaksen 2014)

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \cong \mathbb{F}_2[h_1^{\pm 1}, v_1^4, v_n : n \ge 2].$$

Corollary

Can detect various relations in $H^*(\mathcal{A})$ using the zigzag

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \leftarrow H^*(\mathcal{A}_{\mathbb{C}}) \to H^*(\mathcal{A}).$$

Question

If $H^*(Sy A)$ just describes the filtration SS, why bother with it?

Recall $\mathcal{A} =$ Steenrod algebra, $\mathcal{A}_{\mathbb{C}} =$ Sy \mathcal{A} for a suitable filtration.

The first Hopf element

- Have $h_1 \in H^1(\mathcal{A})$. Have $h_1^4 = 0$, so $H^*(\mathcal{A})[h_1^{-1}] = 0$.
- \bigcirc Lifts to $h_1 \in H^1(\mathcal{A}_{\mathbb{C}})$; now $h_1^4 \neq 0$, instead just $\tau \cdot h_1^4 = 0$.

Theorem (Guillou-Isaksen 2014)

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \cong \mathbb{F}_2[h_1^{\pm 1}, v_1^4, v_n : n \ge 2].$$

Corollary

Can detect various relations in $H^*(\mathcal{A})$ using the zigzag

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \leftarrow H^*(\mathcal{A}_{\mathbb{C}}) \to H^*(\mathcal{A}).$$

Question

If $H^*(Sy A)$ just describes the filtration SS, why bother with it?

Recall $\mathcal{A} =$ Steenrod algebra, $\mathcal{A}_{\mathbb{C}} =$ Sy \mathcal{A} for a suitable filtration.

The first Hopf element

- Have $h_1 \in H^1(\mathcal{A})$. Have $h_1^4 = 0$, so $H^*(\mathcal{A})[h_1^{-1}] = 0$.
- **2** Lifts to $h_1 \in H^1(\mathcal{A}_{\mathbb{C}})$; now $h_1^4 \neq 0$, instead just $\tau \cdot h_1^4 = 0$.

Theorem (Guillou-Isaksen 2014)

 $H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \cong \mathbb{F}_2[h_1^{\pm 1}, v_1^4, v_n : n \ge 2].$

Corollary

Can detect various relations in $H^*(\mathcal{A})$ using the zigzag

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \leftarrow H^*(\mathcal{A}_{\mathbb{C}}) \to H^*(\mathcal{A}).$$

Question

If $H^*(Sy A)$ just describes the filtration SS, why bother with it?

Recall $\mathcal{A} =$ Steenrod algebra, $\mathcal{A}_{\mathbb{C}} =$ Sy \mathcal{A} for a suitable filtration.

The first Hopf element

- Have $h_1 \in H^1(\mathcal{A})$. Have $h_1^4 = 0$, so $H^*(\mathcal{A})[h_1^{-1}] = 0$.
- **2** Lifts to $h_1 \in H^1(\mathcal{A}_{\mathbb{C}})$; now $h_1^4 \neq 0$, instead just $\tau \cdot h_1^4 = 0$.

Theorem (Guillou-Isaksen 2014)

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \cong \mathbb{F}_2[h_1^{\pm 1}, v_1^4, v_n : n \ge 2].$$

Corollary

Can detect various relations in $H^*(\mathcal{A})$ using the zigzag

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \leftarrow H^*(\mathcal{A}_{\mathbb{C}}) \to H^*(\mathcal{A}).$$

William Balderrama (UIUC)

Question

If $H^*(Sy A)$ just describes the filtration SS, why bother with it?

Recall $\mathcal{A} =$ Steenrod algebra, $\mathcal{A}_{\mathbb{C}} =$ Sy \mathcal{A} for a suitable filtration.

The first Hopf element

- Have $h_1 \in H^1(\mathcal{A})$. Have $h_1^4 = 0$, so $H^*(\mathcal{A})[h_1^{-1}] = 0$.
- **2** Lifts to $h_1 \in H^1(\mathcal{A}_{\mathbb{C}})$; now $h_1^4 \neq 0$, instead just $\tau \cdot h_1^4 = 0$.

Theorem (Guillou-Isaksen 2014)

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \cong \mathbb{F}_2[h_1^{\pm 1}, v_1^4, v_n : n \ge 2].$$

Corollary

Can detect various relations in $H^*(\mathcal{A})$ using the zigzag

$$H^*(\mathcal{A}_{\mathbb{C}})[h_1^{-1}] \leftarrow H^*(\mathcal{A}_{\mathbb{C}}) \to H^*(\mathcal{A}).$$

William Balderrama (UIUC)

On beyond ordinary algebra

Observation

- Went from filtration on A to filtration on C_A (or $\text{Ext}_A(k, k)$);
- **2** It's the homotopical filtration that did all the work.

So we should work with *filtered spectra*.

Filtered spectra: quick facts

- (Lurie) Symmetric monoidal equivalence Sy: $Sp_{Filt} \simeq Mod_{S[\sigma]}(Sp_{gr})$
- 2 $C(\sigma^n) = \mathbb{S}[\sigma]/(\sigma^n)$ is \mathbb{E}_{∞} , with $C(\sigma) =$ unit of Sp_{gr} ;
- 3 Given $X = \operatorname{colim}_n X(n)$ filtered spectrum, have

 $(X/(\sigma^n))(p) = (X \otimes C(\sigma^n))(p) = \operatorname{Cof}(X(p-n) \to X(p)).$

This, and what follows, generalizes to other stable categories.

On beyond ordinary algebra

Observation

• Went from filtration on A to filtration on C_A (or $\text{Ext}_A(k, k)$);

2 It's the homotopical filtration that did all the work.

So we should work with *filtered spectra*.

Filtered spectra: quick facts

- (Lurie) Symmetric monoidal equivalence Sy: $\operatorname{Sp}_{\operatorname{Filt}} \simeq \operatorname{Mod}_{\mathbb{S}[\sigma]}(\operatorname{Sp}_{\operatorname{gr}})$
- $\ \ \, {\mathfrak O} \ \ \, C(\sigma^n)={\mathbb S}[\sigma]/(\sigma^n) \ \ {\rm is} \ \ {\mathbb E}_\infty, \ {\rm with} \ C(\sigma)= {\rm unit} \ \ {\rm of} \ \ {\mathbb S}{\rm p}_{\rm gr};$
- **3** Given $X = \operatorname{colim}_n X(n)$ filtered spectrum, have

$$(X/(\sigma^n))(p) = (X \otimes C(\sigma^n))(p) = \operatorname{Cof}(X(p-n) \to X(p)).$$

This, and what follows, generalizes to other stable categories.

Review: spectral sequences

Notation for $X \in Sp_{Filt}$

Write $X(p,q) = \operatorname{Cof}(X(p) \to X(q))$, with $X(\infty) = \operatorname{colim} X$.

Theorem

There is a spectral sequence

$$E_{p,q}^1 = \pi_q X(p-1,p) \Rightarrow \pi_q X(\infty), \qquad d_r^{p,q} \colon E_{p,q}^r \to E_{p-r,q-1}^r;$$

Explanation, or, what is a spectral sequence?

• Each (E^r, d^r) is a chain complex, i.e. $d^r \circ d^r = 0$;

2 Isomorphisms $E^{r+1} = H_*(E^r, d^r) = Z^r/B^r$ (but d^{r+1} is extra).

So each E^{r+n} is a subquotient of E^r . In good cases (i.p. $X(-\infty) = 0$):

(a) With $E^{\infty} = (\cap_r Z^r)/(\cup_r B^r)$ and $F^p = \operatorname{Im}(\pi_q X(p) \to \pi_q X(\infty)),$

$$E^{\infty} = \operatorname{gr} \pi_* X(\infty).$$

All spectral sequences will be considered convergent.

William Balderrama (UIUC)

Synthetic homotopy

Review: spectral sequences

Notation for $X \in Sp_{Filt}$

Write $X(p,q) = \operatorname{Cof}(X(p) \to X(q))$, with $X(\infty) = \operatorname{colim} X$.

Theorem

There is a spectral sequence

$$E_{p,q}^1 = \pi_q X(p-1,p) \Rightarrow \pi_q X(\infty), \qquad d_r^{p,q} \colon E_{p,q}^r \to E_{p-r,q-1}^r;$$

Explanation, or, what is a spectral sequence?

• Each (E^r, d^r) is a chain complex, i.e. $d^r \circ d^r = 0$;

2 Isomorphisms $E^{r+1} = H_*(E^r, d^r) = Z^r/B^r$ (but d^{r+1} is extra).

So each E^{r+n} is a subquotient of E^r . In good cases (i.p. $X(-\infty) = 0$):

(3) With $E^{\infty} = (\cap_r Z^r) / (\cup_r B^r)$ and $F^p = \operatorname{Im}(\pi_q X(p) \to \pi_q X(\infty)),$

$$E^{\infty} = \operatorname{gr} \pi_* X(\infty).$$

All spectral sequences will be considered convergent.

William Balderrama (UIUC)

Review: spectral sequences

Notation for $X \in Sp_{Filt}$

Write $X(p,q) = \operatorname{Cof}(X(p) \to X(q))$, with $X(\infty) = \operatorname{colim} X$.

Theorem

There is a spectral sequence

$$E_{p,q}^1 = \pi_q X(p-1,p) \Rightarrow \pi_q X(\infty), \qquad d_r^{p,q} \colon E_{p,q}^r \to E_{p-r,q-1}^r;$$

Explanation, or, what is a spectral sequence?

• Each (E^r, d^r) is a chain complex, i.e. $d^r \circ d^r = 0$;

2 Isomorphisms $E^{r+1} = H_*(E^r, d^r) = Z^r/B^r$ (but d^{r+1} is extra).

So each E^{r+n} is a subquotient of E^r . In good cases (i.p. $X(-\infty) = 0$):

 $\ \ \, \textbf{ o } \ \, \textbf{With } E^{\infty}=(\cap_r Z^r)/(\cup_r B^r) \ \, \textbf{and } \ F^p=\text{Im}(\pi_q X(p)\to\pi_q X(\infty)),$

$$E^{\infty} = \operatorname{gr} \pi_* X(\infty).$$

All spectral sequences will be considered convergent.

William Balderrama (UIUC)

Review: construction of the spectral sequence

Construction

For $p \leq q \leq r$, have cofibering

$$X(p,q) \to X(p,r) \to X(q,r).$$

If we define

$$E_{p,q}^r = \text{Im}(\pi_q X(p-r,p) \to \pi_q X(p-1,p+r-1)),$$

we get $d^r \colon E^r_{p,q} \to E^r_{p-r,q-1}$ induced by a boundary map.

Example

Have $E_{p,q}^1 = \pi_q X(p-1,p)$, and d^1 induced by boundary in X.

Terminology

The collection of $\pi_*X(p,q)$ and maps is a *Cartan-Eilenberg system*. Can show $E^{r+1} = H_*(E^r, d^r)$, so get a spectral sequence.

William Balderrama (UIUC)

Synthetic homotopy

Review: construction of the spectral sequence

Construction

For $p \leq q \leq r$, have cofibering

$$X(p,q) \to X(p,r) \to X(q,r).$$

If we define

$$E_{p,q}^r = \text{Im}(\pi_q X(p-r,p) \to \pi_q X(p-1,p+r-1)),$$

we get $d^r \colon E^r_{p,q} \to E^r_{p-r,q-1}$ induced by a boundary map.

Example

Have $E_{p,q}^1 = \pi_q X(p-1,p)$, and d^1 induced by boundary in X.

Terminology

The collection of $\pi_*X(p,q)$ and maps is a *Cartan-Eilenberg system*. Can show $E^{r+1} = H_*(E^r, d^r)$, so get a spectral sequence.

William Balderrama (UIUC)

Synthetic homotopy

Review: construction of the spectral sequence

Construction

For $p \leq q \leq r$, have cofibering

$$X(p,q) \to X(p,r) \to X(q,r).$$

If we define

$$E_{p,q}^r = \text{Im}(\pi_q X(p-r,p) \to \pi_q X(p-1,p+r-1)),$$

we get $d^r \colon E^r_{p,q} \to E^r_{p-r,q-1}$ induced by a boundary map.

Example

Have $E_{p,q}^1 = \pi_q X(p-1,p)$, and d^1 induced by boundary in X.

Terminology

The collection of $\pi_*X(p,q)$ and maps is a *Cartan-Eilenberg system*. Can show $E^{r+1} = H_*(E^r, d^r)$, so get a spectral sequence.

William Balderrama (UIUC)

Review: detection

Definitions: filtration and detection $x \in \pi_q X(\infty)$ is in *filtration* p if there is a lift

If x projects to $\overline{x} \in E_{p,q}^r \subset \pi_q X(p-1, p+r-1)$ nonzero, one says that x is *detected* by \overline{x} .

C a

Review: hidden extensions

"Definition"

A hidden additive extension refers to situations like:

- $x \in \pi_q X(\infty)$ with $2x \neq 0$;
- 2 x is detected by $\overline{x} \in E_{p,q}^{\infty}$, and $2\overline{x} = 0$.

In general hidden extensions are the failure of " $E_{\infty} = \pi_* X(\infty)$ ".

Closer look

Fix x as above. Then:

- As x is in filtration p, lift to $\tilde{x} \colon \mathbb{S}^q \to X(p);$
- (2) As $2x \neq 0$, have $2\tilde{x} \neq 0$;

(a) As $2\overline{x} = 0$ in E^{∞} , have lift $2\widetilde{x} \colon \mathbb{S}^q \to X(p-1)$;

that is 2x lifts higher through the tower than x.

Review: hidden extensions

"Definition"

A hidden additive extension refers to situations like:

- $x \in \pi_q X(\infty)$ with $2x \neq 0$;
- 2 x is detected by $\overline{x} \in E_{p,q}^{\infty}$, and $2\overline{x} = 0$.

In general hidden extensions are the failure of " $E_{\infty} = \pi_* X(\infty)$ ".

Closer look

Fix x as above. Then:

- As x is in filtration p, lift to $\tilde{x} \colon \mathbb{S}^q \to X(p);$
- **2** As $2x \neq 0$, have $2\tilde{x} \neq 0$;

3 As $2\overline{x} = 0$ in E^{∞} , have lift $2\widetilde{x} \colon \mathbb{S}^q \to X(p-1)$;

that is 2x lifts higher through the tower than x.

Definition

The bigraded homotopy groups of $X \in \text{Sp}_{\text{Filt}}$ are $\pi_{s,c}X = \pi_s X(c)$. Thus $\pi_{s,*}X$ is a $\mathbb{Z}[\sigma]$ -module, $|\sigma| = (0, 1)$.

Example

Filtration on A gives filtration on C_A with $\pi_{*,*}C_A = H^*(Sy A)$.

As a deformation

• Have
$$\pi_{*,*}X[\sigma^{-1}] = \pi_*X(\infty) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

2 Have edge map $(\pi_{*,*}X)/(\sigma) \to E_{\infty}^{*,*}$.

The hidden extension revisited

•
$$x \in \pi_q X(\infty)$$
 in filtration p : lifts to $\tilde{x} \in \pi_{q,p} X$;

2) If $2\overline{x} = 0$ in E^{∞} : have σ -divisibility $2\widetilde{x} = \sigma \cdot \widetilde{2x}$.

In general $\pi_{*,*}X$ records the computation of the spectral sequence $\pi_* \operatorname{gr} X \Rightarrow \pi_* X(\infty)$, e.g. σ^r -torsion corresponds to d_r -differentials.

William Balderrama (UIUC)

Definition

The bigraded homotopy groups of $X \in \text{Sp}_{\text{Filt}}$ are $\pi_{s,c}X = \pi_s X(c)$. Thus $\pi_{s,*}X$ is a $\mathbb{Z}[\sigma]$ -module, $|\sigma| = (0, 1)$.

Example

Filtration on A gives filtration on C_A with $\pi_{*,*}C_A = H^*(Sy A)$.

As a deformation

• Have
$$\pi_{*,*}X[\sigma^{-1}] = \pi_*X(\infty) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

2 Have edge map $(\pi_{*,*}X)/(\sigma) \to E_{\infty}^{*,*}$.

The hidden extension revisited

•
$$x \in \pi_q X(\infty)$$
 in filtration p : lifts to $\tilde{x} \in \pi_{q,p} X$;

2) If $2\overline{x} = 0$ in E^{∞} : have σ -divisibility $2\widetilde{x} = \sigma \cdot \widetilde{2x}$.

In general $\pi_{*,*}X$ records the computation of the spectral sequence $\pi_* \operatorname{gr} X \Rightarrow \pi_* X(\infty)$, e.g. σ^r -torsion corresponds to d_r -differentials.

William Balderrama (UIUC)

Definition

The bigraded homotopy groups of $X \in Sp_{\text{Filt}}$ are $\pi_{s,c}X = \pi_s X(c)$. Thus $\pi_{s,*}X$ is a $\mathbb{Z}[\sigma]$ -module, $|\sigma| = (0, 1)$.

Example

Filtration on A gives filtration on C_A with $\pi_{*,*}C_A = H^*(Sy A)$.

As a deformation

• Have
$$\pi_{*,*}X[\sigma^{-1}] = \pi_*X(\infty) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

2 Have edge map $(\pi_{*,*}X)/(\sigma) \to E_{\infty}^{*,*}$.

The hidden extension revisited

•
$$x \in \pi_q X(\infty)$$
 in filtration p : lifts to $\tilde{x} \in \pi_{q,p} X$;

(2) If $2\overline{x} = 0$ in E^{∞} : have σ -divisibility $2\widetilde{x} = \sigma \cdot \widetilde{2x}$.

In general $\pi_{*,*}X$ records the computation of the spectral sequence $\pi_* \operatorname{gr} X \Rightarrow \pi_* X(\infty)$, e.g. σ^r -torsion corresponds to d_r -differentials.

William Balderrama (UIUC)

Definition

The bigraded homotopy groups of $X \in Sp_{\text{Filt}}$ are $\pi_{s,c}X = \pi_s X(c)$. Thus $\pi_{s,*}X$ is a $\mathbb{Z}[\sigma]$ -module, $|\sigma| = (0, 1)$.

Example

Filtration on A gives filtration on C_A with $\pi_{*,*}C_A = H^*(Sy A)$.

As a deformation

• Have
$$\pi_{*,*}X[\sigma^{-1}] = \pi_*X(\infty) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

 $\ \ \hbox{$\textcircled{0}$ Have edge map } (\pi_{*,*}X)/(\sigma) \to E_\infty^{*,*}.$

The hidden extension revisited

•
$$x \in \pi_q X(\infty)$$
 in filtration p : lifts to $\tilde{x} \in \pi_{q,p} X$;

2 If $2\overline{x} = 0$ in E^{∞} : have σ -divisibility $2\widetilde{x} = \sigma \cdot \widetilde{2x}$.

In general $\pi_{*,*}X$ records the computation of the spectral sequence $\pi_* \operatorname{gr} X \Rightarrow \pi_* X(\infty)$, e.g. σ^r -torsion corresponds to d_r -differentials.

William Balderrama (UIUC)

Definition

The bigraded homotopy groups of $X \in Sp_{\text{Filt}}$ are $\pi_{s,c}X = \pi_s X(c)$. Thus $\pi_{s,*}X$ is a $\mathbb{Z}[\sigma]$ -module, $|\sigma| = (0, 1)$.

Example

Filtration on A gives filtration on C_A with $\pi_{*,*}C_A = H^*(Sy A)$.

As a deformation

• Have
$$\pi_{*,*}X[\sigma^{-1}] = \pi_*X(\infty) \otimes \mathbb{Z}[\sigma^{\pm 1}];$$

 $\ \ \text{ Bave edge map } (\pi_{*,*}X)/(\sigma) \to E_\infty^{*,*}.$

The hidden extension revisited

•
$$x \in \pi_q X(\infty)$$
 in filtration p : lifts to $\tilde{x} \in \pi_{q,p} X$;

2 If $2\overline{x} = 0$ in E^{∞} : have σ -divisibility $2\widetilde{x} = \sigma \cdot \widetilde{2x}$.

In general $\pi_{*,*}X$ records the computation of the spectral sequence $\pi_* \operatorname{gr} X \Rightarrow \pi_* X(\infty)$, e.g. σ^r -torsion corresponds to d_r -differentials.

William Balderrama (UIUC)

Filtrations

•
$$X(\infty) = \operatorname{colim}_p X(p)$$
 gave spectral sequence for $\pi_* X(\infty)$;

2 $X(n) = \operatorname{colim}_{p \leq n} X(p)$ gives spectral sequence for $\pi_* X(n)$.

Description

The SS for $\pi_*X(n)$ looks like that for $\pi_*X(\infty)$, cut off at filtration n:

- Stuff in filtration > n is no longer present;
- ② If $d_r(x)$ in filtration > n for $X(\infty)$, then x is p.c. for X(n).

Theorem (putting it all together)

Trigraded spectral sequence $E_1^{s,c,f} = (\pi_{s,c-f}(X/\sigma))\{\sigma^f\} \Rightarrow \pi_{s,c}X.$

Proof

This is just the σ -Bockstein spectral sequence

$$E_1^{s,c,*} = \pi_{s,c} X/(\sigma)[\sigma] \Rightarrow \pi_{s,c} X.$$

William Balderrama (UIUC)

Synthetic homotopy

Filtrations

- $X(\infty) = \operatorname{colim}_p X(p)$ gave spectral sequence for $\pi_* X(\infty)$;
- $2 X(n) = \operatorname{colim}_{p \le n} X(p) \text{ gives spectral sequence for } \pi_* X(n).$

Description

The SS for $\pi_*X(n)$ looks like that for $\pi_*X(\infty)$, cut off at filtration n:

- Stuff in filtration > n is no longer present;
- **2** If $d_r(x)$ in filtration > n for $X(\infty)$, then x is p.c. for X(n).

Theorem (putting it all together)

Trigraded spectral sequence $E_1^{s,c,f} = (\pi_{s,c-f}(X/\sigma))\{\sigma^f\} \Rightarrow \pi_{s,c}X.$

Proof

This is just the σ -Bockstein spectral sequence

$$E_1^{s,c,*} = \pi_{s,c} X/(\sigma)[\sigma] \Rightarrow \pi_{s,c} X.$$

William Balderrama (UIUC)

Filtrations

- $X(\infty) = \operatorname{colim}_p X(p)$ gave spectral sequence for $\pi_* X(\infty)$;
- 2 $X(n) = \operatorname{colim}_{p \le n} X(p)$ gives spectral sequence for $\pi_* X(n)$.

Description

The SS for $\pi_*X(n)$ looks like that for $\pi_*X(\infty)$, cut off at filtration n:

- Stuff in filtration > n is no longer present;
- **2** If $d_r(x)$ in filtration > n for $X(\infty)$, then x is p.c. for X(n).

Theorem (putting it all together)

Trigraded spectral sequence $E_1^{s,c,f} = (\pi_{s,c-f}(X/\sigma))\{\sigma^f\} \Rightarrow \pi_{s,c}X.$

Proof

This is just the σ -Bockstein spectral sequence

$$E_1^{s,c,*} = \pi_{s,c} X / (\sigma)[\sigma] \Rightarrow \pi_{s,c} X.$$

William Balderrama (UIUC)

Filtrations

- $X(\infty) = \operatorname{colim}_p X(p)$ gave spectral sequence for $\pi_* X(\infty)$;
- 2 $X(n) = \operatorname{colim}_{p \le n} X(p)$ gives spectral sequence for $\pi_* X(n)$.

Description

The SS for $\pi_*X(n)$ looks like that for $\pi_*X(\infty)$, cut off at filtration n:

- Stuff in filtration > n is no longer present;
- **2** If $d_r(x)$ in filtration > n for $X(\infty)$, then x is p.c. for X(n).

Theorem (putting it all together)

Trigraded spectral sequence $E_1^{s,c,f} = (\pi_{s,c-f}(X/\sigma))\{\sigma^f\} \Rightarrow \pi_{s,c}X.$

Proof

This is just the σ -Bockstein spectral sequence

$$E_1^{s,c,*} = \pi_{s,c} X / (\sigma)[\sigma] \Rightarrow \pi_{s,c} X.$$

William Balderrama (UIUC)

Deformations of stable homotopy theories

Filtered ring spectra as deformations

- For $R \in Sp_{Filt}$ a filtered \mathbb{A}_{∞} ring, have
 - $R(\infty)$ an ordinary \mathbb{A}_{∞} ring spectrum;
 - **2** gr $R = R \otimes C(\sigma)$ a graded \mathbb{A}_{∞} ring spectrum.

Get *deformation* with generic fiber $R(\infty)$ and special fiber gr R.

Filtered modules as a deformation

Have filtered module category $LMod_R$, with span

$$\mathrm{L}\mathcal{M}\mathrm{od}_{R\otimes C(\sigma)} \xleftarrow{\sigma\mapsto 0} \mathrm{L}\mathcal{M}\mathrm{od}_{R} \xrightarrow{\sigma\mapsto 1} \mathrm{L}\mathcal{M}\mathrm{od}_{R(\infty)} :$$

A deformation, generic fiber $LMod_{R(\infty)}$ and special fiber $LMod_{R\otimes C(\sigma)}$. Deformation theory governed by "higher structure" of filtration SS

$$\pi_q \operatorname{gr} R \Rightarrow \pi_q R(\infty).$$

Can generalize to other settings.

William Balderrama (UIUC)

Deformations of stable homotopy theories

Filtered ring spectra as deformations

For $R \in Sp_{Filt}$ a filtered \mathbb{A}_{∞} ring, have

• $R(\infty)$ an ordinary \mathbb{A}_{∞} ring spectrum;

2 gr $R = R \otimes C(\sigma)$ a graded \mathbb{A}_{∞} ring spectrum.

Get *deformation* with generic fiber $R(\infty)$ and special fiber gr R.

Filtered modules as a deformation

Have filtered module category $LMod_R$, with span

$$\mathrm{LMod}_{R\otimes C(\sigma)} \xleftarrow{\sigma\mapsto 0} \mathrm{LMod}_R \xrightarrow{\sigma\mapsto 1} \mathrm{LMod}_{R(\infty)} :$$

A deformation, generic fiber $LMod_{R(\infty)}$ and special fiber $LMod_{R\otimes C(\sigma)}$. Deformation theory governed by "higher structure" of filtration SS

$$\pi_q \operatorname{gr} R \Rightarrow \pi_q R(\infty).$$

Can generalize to other settings.

William Balderrama (UIUC)

The trivial deformation

Observation

 $\mathrm{Sp}_{\mathrm{Filt}} = \mathrm{Mod}_{\mathbb{S}[\sigma]}$ itelf has generic fiber Sp and special fiber $\mathrm{Sp}_{\mathrm{gr}}$.

The generalized Mahowald square

For $X \in \text{Sp}_{\text{Filt}}$, if each $H_*X(p-1) \subset H_*X(p)$ (say $H = H\mathbb{F}_2$), get

The diagonal: the filtration-complete Adams SS

Where $H_{\text{Filt}} := H \otimes C(\sigma)$, have $\mathcal{A}_{\text{Filt}} = \mathcal{A}[\epsilon]/(\epsilon^2)$ and

$$E_2 = \operatorname{Ext}_{\mathcal{A}_{\operatorname{Filt}}}(H_{*,*}\operatorname{gr} X) \Rightarrow \pi_{*,*}X.$$

When the Mahowald square is defined, have $E_2 = \operatorname{Ext}_{\mathcal{A}}(H_* \operatorname{gr} X)[\sigma].$

William Balderrama (UIUC)

The trivial deformation

F

Observation

 $\mathrm{Sp}_{\mathrm{Filt}} = \mathrm{Mod}_{\mathbb{S}[\sigma]}$ itelf has generic fiber Sp and special fiber $\mathrm{Sp}_{\mathrm{gr}}$.

The generalized Mahowald square

For $X \in \text{Sp}_{\text{Filt}}$, if each $H_*X(p-1) \subset H_*X(p)$ (say $H = H\mathbb{F}_2$), get

The diagonal: the filtration-complete Adams SS

Where $H_{\text{Filt}} := H \otimes C(\sigma)$, have $\mathcal{A}_{\text{Filt}} = \mathcal{A}[\epsilon]/(\epsilon^2)$ and

$$E_2 = \operatorname{Ext}_{\mathcal{A}_{\operatorname{Filt}}}(H_{*,*}\operatorname{gr} X) \Rightarrow \pi_{*,*}X.$$

When the Mahowald square is defined, have $E_2 = \operatorname{Ext}_{\mathcal{A}}(H_* \operatorname{gr} X)[\sigma].$

William Balderrama (UIUC)

.

The trivial deformation

Observation

 $\mathrm{Sp}_{\mathrm{Filt}} = \mathrm{Mod}_{\mathbb{S}[\sigma]}$ itelf has generic fiber Sp and special fiber $\mathrm{Sp}_{\mathrm{gr}}$.

The generalized Mahowald square

For $X \in \text{Sp}_{\text{Filt}}$, if each $H_*X(p-1) \subset H_*X(p)$ (say $H = H\mathbb{F}_2$), get

The diagonal: the filtration-complete Adams SS

Where $H_{\text{Filt}} := H \otimes C(\sigma)$, have $\mathcal{A}_{\text{Filt}} = \mathcal{A}[\epsilon]/(\epsilon^2)$ and

$$E_2 = \operatorname{Ext}_{\mathcal{A}_{\operatorname{Filt}}}(H_{*,*}\operatorname{gr} X) \Rightarrow \pi_{*,*}X.$$

When the Mahowald square is defined, have $E_2 = \operatorname{Ext}_{\mathcal{A}}(H_* \operatorname{gr} X)[\sigma].$

William Balderrama (UIUC)

.

Whitehead towers

There is a lax symmetric monoidal functor

$$W \colon \mathrm{Sp} \to \mathrm{Sp}_{\mathrm{Filt}}, \qquad W(X)_n = \tau_{\geq n} X.$$

Definition: synthetic R-modules

Given \mathbb{A}_{∞} ring R, get $\operatorname{Syn}_{R} = \operatorname{LMod}_{W(R)} = synthetic R-modules.$ Deformation: generic fiber LMod_{R} and special fiber $\operatorname{LMod}_{R_{*}} = \mathcal{D}(R_{*}).$

Example application

Have functor $W: \mathrm{LMod}_R \to \mathrm{Syn}_R$. For R commutative:

- $(W(M) \otimes_{W(R)} W(N))[\sigma^{-1}] \simeq M \otimes_R N \in \mathcal{M}od_R;$
- 2 gr strong sym. monoidal, so $\operatorname{gr}(W(M) \otimes_{W(R)} W(N)) \simeq M_* \otimes_{R_*}^{\mathbb{L}} N_*.$
- Thus filtration $SS = K \ddot{u} nneth$ spectral sequence.

Remark: a more abstract construction

Can show $\operatorname{Syn}_R =$ Sp-valued modules of algebraic theory $\operatorname{LMod}_R^{\text{free}}$.

Whitehead towers

There is a lax symmetric monoidal functor

$$W \colon \mathrm{Sp} \to \mathrm{Sp}_{\mathrm{Filt}}, \qquad W(X)_n = \tau_{\geq n} X.$$

Definition: synthetic R-modules

Given \mathbb{A}_{∞} ring R, get $\operatorname{Syn}_{R} = \operatorname{LMod}_{W(R)} = synthetic R-modules.$ Deformation: generic fiber LMod_{R} and special fiber $\operatorname{LMod}_{R_{*}} = \mathcal{D}(R_{*}).$

Example application

Have functor $W: \mathrm{LMod}_R \to \mathrm{Syn}_R$. For R commutative:

- $(W(M) \otimes_{W(R)} W(N))[\sigma^{-1}] \simeq M \otimes_R N \in \operatorname{Mod}_R;$
- 2 gr strong sym. monoidal, so $\operatorname{gr}(W(M) \otimes_{W(R)} W(N)) \simeq M_* \otimes_{R_*}^{\mathbb{L}} N_*.$

Thus filtration $SS = K \ddot{u} nneth spectral sequence.$

Remark: a more abstract construction

Can show $\operatorname{Syn}_R =$ Sp-valued modules of algebraic theory $\operatorname{LMod}_R^{\text{free}}$.

Whitehead towers

There is a lax symmetric monoidal functor

$$W \colon \mathrm{Sp} \to \mathrm{Sp}_{\mathrm{Filt}}, \qquad W(X)_n = \tau_{\geq n} X.$$

Definition: synthetic R-modules

Given \mathbb{A}_{∞} ring R, get $\operatorname{Syn}_{R} = \operatorname{LMod}_{W(R)} = synthetic R-modules.$ Deformation: generic fiber LMod_{R} and special fiber $\operatorname{LMod}_{R_{*}} = \mathcal{D}(R_{*}).$

Example application

Have functor $W \colon LMod_R \to Syn_R$. For R commutative:

 $(W(M) \otimes_{W(R)} W(N))[\sigma^{-1}] \simeq M \otimes_R N \in \operatorname{Mod}_R;$

2 gr strong sym. monoidal, so $\operatorname{gr}(W(M) \otimes_{W(R)} W(N)) \simeq M_* \otimes_{R_*}^{\mathbb{L}} N_*$. Thus filtration SS = Künneth spectral sequence.

Remark: a more abstract construction

Can show $\operatorname{Syn}_R = \operatorname{Sp-valued}$ modules of algebraic theory $\operatorname{LMod}_R^{\operatorname{free}}$.

Whitehead towers

There is a lax symmetric monoidal functor

$$W \colon \mathrm{Sp} \to \mathrm{Sp}_{\mathrm{Filt}}, \qquad W(X)_n = \tau_{\geq n} X.$$

Definition: synthetic R-modules

Given \mathbb{A}_{∞} ring R, get $\operatorname{Syn}_{R} = \operatorname{LMod}_{W(R)} = synthetic R-modules.$ Deformation: generic fiber LMod_{R} and special fiber $\operatorname{LMod}_{R_{*}} = \mathcal{D}(R_{*}).$

Example application

Have functor $W \colon LMod_R \to Syn_R$. For R commutative:

 $(W(M) \otimes_{W(R)} W(N))[\sigma^{-1}] \simeq M \otimes_R N \in \operatorname{Mod}_R;$

2 gr strong sym. monoidal, so $\operatorname{gr}(W(M) \otimes_{W(R)} W(N)) \simeq M_* \otimes_{R_*}^{\mathbb{L}} N_*$. Thus filtration $\operatorname{SS} = K \ddot{u} nneth$ spectral sequence.

Remark: a more abstract construction

Can show $\operatorname{Syn}_R = \operatorname{Sp-valued}$ modules of algebraic theory $\operatorname{LMod}_R^{\operatorname{free}}$.

William Balderrama (UIUC)
Definition: the root sphere

Let \mathbb{S}_{Root} = filtered spectrum with $\mathbb{S}_{\text{Root}}(n) = F(P_{-n}^{\infty}, \mathbb{S})$; write $\rho = \sigma$.

Facts

- **1** \mathbb{S}_{Root} is a filtered \mathbb{E}_{∞} ring spectrum (?), so get $\operatorname{Sp}_{\text{Root}} := \operatorname{Mod}_{\operatorname{Spot}}$;
- **2** Have $\mathbb{S}_{\text{Root}}/(\rho) = \mathbb{S}[\tau^{\pm 1}]$, and Lin's theorem: $\mathbb{S}_{\text{Root}}[\rho^{-1}] \simeq \mathbb{S}[\rho^{\pm 1}]$;
- **3** Rmk: C_2 Segal conj. (Lin): $\pi_{s+c\sigma} \mathbb{S}_{C_2} = \pi_{s,c} \mathbb{S}_{\text{Root}}$.

Reinterpretation

There is an equivalence of categories

$$u : \operatorname{Fun}(BC_2, \operatorname{Sp}) \simeq \operatorname{Sp}_{\operatorname{Root}}^{\operatorname{Cpl}(\rho)}, \quad \nu(X)(n) = F(S^{-n\sigma}, X)^{\operatorname{h}C_2}$$

Question

Definition: the root sphere

Let \mathbb{S}_{Root} = filtered spectrum with $\mathbb{S}_{\text{Root}}(n) = F(P_{-n}^{\infty}, \mathbb{S})$; write $\rho = \sigma$.

Facts

- **Q** \mathbb{S}_{Root} is a filtered \mathbb{E}_{∞} ring spectrum (?), so get $\mathbb{S}_{\text{Root}} := \mathbb{M}_{\text{od}_{\mathbb{S}_{\text{Root}}}}$;
- **2** Have $\mathbb{S}_{\text{Root}}/(\rho) = \mathbb{S}[\tau^{\pm 1}]$, and Lin's theorem: $\mathbb{S}_{\text{Root}}[\rho^{-1}] \simeq \mathbb{S}[\rho^{\pm 1}]$;
- **3** Rmk: C_2 Segal conj. (Lin): $\pi_{s+c\sigma} \mathbb{S}_{C_2} = \pi_{s,c} \mathbb{S}_{\text{Root}}$.

Reinterpretation

There is an equivalence of categories

$$u : \operatorname{Fun}(BC_2, \operatorname{Sp}) \simeq \operatorname{Sp}_{\operatorname{Root}}^{\operatorname{Cpl}(\rho)}, \quad \nu(X)(n) = F(S^{-n\sigma}, X)^{\operatorname{h}C_2}$$

Question

Definition: the root sphere

Let \mathbb{S}_{Root} = filtered spectrum with $\mathbb{S}_{\text{Root}}(n) = F(P_{-n}^{\infty}, \mathbb{S})$; write $\rho = \sigma$.

Facts

- **Q** \mathbb{S}_{Root} is a filtered \mathbb{E}_{∞} ring spectrum (?), so get $\mathbb{S}_{\text{Root}} := \mathcal{M}od_{\mathbb{S}_{\text{Root}}}$;
- **2** Have $\mathbb{S}_{\text{Root}}/(\rho) = \mathbb{S}[\tau^{\pm 1}]$, and Lin's theorem: $\mathbb{S}_{\text{Root}}[\rho^{-1}] \simeq \mathbb{S}[\rho^{\pm 1}]$;
- **3** Rmk: C_2 Segal conj. (Lin): $\pi_{s+c\sigma} \mathbb{S}_{C_2} = \pi_{s,c} \mathbb{S}_{\text{Root}}$.

Reinterpretation

There is an equivalence of categories

$$u$$
: Fun $(BC_2, \operatorname{Sp}) \simeq \operatorname{Sp}_{\operatorname{Root}}^{\operatorname{Cpl}(\rho)}, \quad \nu(X)(n) = F(S^{-n\sigma}, X)^{\operatorname{h}C_2}.$

Question

Definition: the root sphere

Let \mathbb{S}_{Root} = filtered spectrum with $\mathbb{S}_{\text{Root}}(n) = F(P_{-n}^{\infty}, \mathbb{S})$; write $\rho = \sigma$.

Facts

- **Q** \mathbb{S}_{Root} is a filtered \mathbb{E}_{∞} ring spectrum (?), so get $\mathbb{S}_{\text{Root}} := \mathcal{M}od_{\mathbb{S}_{\text{Root}}}$;
- **2** Have $\mathbb{S}_{\text{Root}}/(\rho) = \mathbb{S}[\tau^{\pm 1}]$, and Lin's theorem: $\mathbb{S}_{\text{Root}}[\rho^{-1}] \simeq \mathbb{S}[\rho^{\pm 1}]$;
- **3** Rmk: C_2 Segal conj. (Lin): $\pi_{s+c\sigma} \mathbb{S}_{C_2} = \pi_{s,c} \mathbb{S}_{\text{Root}}$.

Reinterpretation

There is an equivalence of categories

$$u$$
: Fun $(BC_2, \operatorname{Sp}) \simeq \operatorname{Sp}_{\operatorname{Root}}^{\operatorname{Cpl}(\rho)}, \quad \nu(X)(n) = F(S^{-n\sigma}, X)^{\operatorname{h}C_2}.$

Question

Borel C_2 -equivariant homotopy as a deformation

Root invariants

Have filt SS = Atiyah-Hirezbruch SS $\pi_* \operatorname{gr} \mathbb{S}_{\operatorname{Root}} = \pi_* \mathbb{S}[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}$. The root invariants $R(\alpha)$ of $\alpha \in \pi_* \mathbb{S}$ are those $\beta \in \pi_* \mathbb{S}$ that detect α .

Interpretation

Borel C_2 -spectra are a deformation with:

- Generic fiber Sp, realized by Tate constr. $\operatorname{Fun}(BC_2, \operatorname{Sp}) \to \operatorname{Sp};$
- ② Special fiber Sp, realized by the forgetful map $\operatorname{Fun}(BC_2, \operatorname{Sp}) \to \operatorname{Sp};$
- ³ Deformation data governed by root invariant data.

Rmk: the Borel Steenrod algebra

Have $\mathcal{A}_{\text{Root}} = \text{Sy}(H_c^*(P_{-\infty}^{\infty}) \otimes' \mathcal{A})$ with $\mathcal{H}(\mathcal{A}_{\text{Root}}) = \text{Sy}_{\text{Root}}(\mathcal{H}(\mathcal{A}))$, and

$$H^*(\mathcal{A})[\tau^{\pm 1}][\rho] \xrightarrow{\rho \text{-BSS}} H^*(\mathcal{A}_{\text{Root}}) \xrightarrow{\text{Borel ASS}} \pi_{*,*} \mathbb{S}_{\text{Root}}$$

Outside Sp_{Root} , get filt-complete ASS $H^*(\mathcal{A})[\tau^{\pm 1}, \rho] \Rightarrow \pi_{*,*} \mathbb{S}_{\text{Root}}$

Borel C_2 -equivariant homotopy as a deformation

Root invariants

Have filt SS = Atiyah-Hirezbruch SS $\pi_* \operatorname{gr} \mathbb{S}_{\operatorname{Root}} = \pi_* \mathbb{S}[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}$. The root invariants $R(\alpha)$ of $\alpha \in \pi_* \mathbb{S}$ are those $\beta \in \pi_* \mathbb{S}$ that detect α .

Interpretation

Borel C_2 -spectra are a deformation with:

- Generic fiber Sp, realized by Tate constr. $\operatorname{Fun}(BC_2, \operatorname{Sp}) \to \operatorname{Sp}$;
- ② Special fiber Sp, realized by the forgetful map $\operatorname{Fun}(BC_2, \operatorname{Sp}) \to \operatorname{Sp}$;
- ³ Deformation data governed by root invariant data.

Rmk: the Borel Steenrod algebra

Have $\mathcal{A}_{\text{Root}} = \text{Sy}(H_c^*(P_{-\infty}^{\infty}) \otimes' \mathcal{A})$ with $\mathcal{H}(\mathcal{A}_{\text{Root}}) = \text{Sy}_{\text{Root}}(\mathcal{H}(\mathcal{A}))$, and

$$H^*(\mathcal{A})[\tau^{\pm 1}][\rho] \xrightarrow{\rho \text{-BSS}}_{\text{Algebraic AHSS}} H^*(\mathcal{A}_{\text{Root}}) \xrightarrow{\text{Borel ASS}}_{\text{Levelwise ASS}} \pi_{*,*} \mathbb{S}_{\text{Root}}$$

Outside Sp_{Root} , get filt-complete ASS $H^*(\mathcal{A})[\tau^{\pm 1}, \rho] \Rightarrow \pi_{*,*} \mathbb{S}_{\text{Root}}$

Borel C_2 -equivariant homotopy as a deformation

Root invariants

Have filt SS = Atiyah-Hirezbruch SS $\pi_* \operatorname{gr} \mathbb{S}_{\operatorname{Root}} = \pi_* \mathbb{S}[\tau^{\pm 1}] \Rightarrow \pi_* \mathbb{S}$. The root invariants $R(\alpha)$ of $\alpha \in \pi_* \mathbb{S}$ are those $\beta \in \pi_* \mathbb{S}$ that detect α .

Interpretation

Borel C_2 -spectra are a deformation with:

- Generic fiber Sp, realized by Tate constr. $\operatorname{Fun}(BC_2, \operatorname{Sp}) \to \operatorname{Sp}$;
- ② Special fiber Sp, realized by the forgetful map $\operatorname{Fun}(BC_2, \operatorname{Sp}) \to \operatorname{Sp}$;
- ³ Deformation data governed by root invariant data.

Rmk: the Borel Steenrod algebra

Have $\mathcal{A}_{\text{Root}} = \text{Sy}(H_c^*(P_{-\infty}^{\infty}) \otimes' \mathcal{A})$ with $\mathcal{H}(\mathcal{A}_{\text{Root}}) = \text{Sy}_{\text{Root}}(\mathcal{H}(\mathcal{A}))$, and

$$H^*(\mathcal{A})[\tau^{\pm 1}][\rho] \xrightarrow{\rho \text{-BSS}} H^*(\mathcal{A}_{\text{Root}}) \xrightarrow{\text{Borel ASS}} \pi_{*,*} \mathbb{S}_{\text{Root}}$$
.

Outside Sp_{Root} , get filt-complete ASS $H^*(\mathcal{A})[\tau^{\pm 1}, \rho] \Rightarrow \pi_{*,*} \mathbb{S}_{\text{Root}}$.

Décalage

Spectral sequence of a cosimplicial spectrum

Given $X: \Delta \to Sp$, there is a spectral sequence

$$E_2 = H_*N(\pi_*X) \Rightarrow \pi_* \operatorname{Tot} X,$$

where N = chain complex of cosimplicial group $\pi_* X$.

Fact

There is lax symmetric monoidal Dec: $\operatorname{Fun}(\Delta, \operatorname{Sp}) \to \operatorname{Sp}_{\operatorname{Filt}}$ such that

- colim $\operatorname{Dec} X \approx \operatorname{Tot} X$;
- ② Filtration SS $E_1 = \text{cosimplicial SS } E_2$.

Construction

Have $(\text{Dec } X)(n) = \text{Tot}(m \mapsto \tau_{\geq n} X(m)).$

Décalage

Spectral sequence of a cosimplicial spectrum

Given $X: \Delta \to \mathcal{S}p$, there is a spectral sequence

$$E_2 = H_*N(\pi_*X) \Rightarrow \pi_* \operatorname{Tot} X,$$

where N = chain complex of cosimplicial group $\pi_* X$.

Fact

There is lax symmetric monoidal Dec: $\operatorname{Fun}(\Delta,\operatorname{Sp})\to\operatorname{Sp}_{\operatorname{Filt}}$ such that

• colim
$$\operatorname{Dec} X \approx \operatorname{Tot} X;$$

2 Filtration SS $E_1 = \text{cosimplicial SS } E_2$.

Construction

Have $(\text{Dec } X)(n) = \text{Tot}(m \mapsto \tau_{\geq n} X(m)).$

Décalage

Spectral sequence of a cosimplicial spectrum

Given $X: \Delta \to \mathcal{S}p$, there is a spectral sequence

$$E_2 = H_*N(\pi_*X) \Rightarrow \pi_* \operatorname{Tot} X,$$

where N = chain complex of cosimplicial group $\pi_* X$.

Fact

There is lax symmetric monoidal Dec: $\operatorname{Fun}(\Delta,\operatorname{Sp})\to\operatorname{Sp}_{\operatorname{Filt}}$ such that

• colim
$$\operatorname{Dec} X \approx \operatorname{Tot} X;$$

2 Filtration SS $E_1 = \text{cosimplicial SS } E_2$.

Construction

Have
$$(\text{Dec } X)(n) = \text{Tot}(m \mapsto \tau_{\geq n} X(m)).$$

Synthetic spectra

Fix an \mathbb{A}_{∞} ring R.

The descent complex

Have an augmented cosimplicial \mathbb{A}_{∞} ring:

$$C_R = \mathbb{S} \longrightarrow R \Longrightarrow R \otimes R \Longrightarrow R \otimes R \otimes R \cdots$$

Totalization is $\mathbb{S}_R^{\wedge} = R$ -nilpotent completion of \mathbb{S} .

Definition: synthetic spectra

Set $\operatorname{Sy}_R \mathbb{S} = \operatorname{Dec}(C_R)$; then *R*-synthetic spectra = $\operatorname{Sp}_R = \operatorname{LMod}_{\operatorname{Sy}_R \mathbb{S}}$.

R-based Adams-Novikov spectral sequence

Have $\operatorname{Sy}_R : \operatorname{Sp} \to \operatorname{Sp}_R$ by $\operatorname{Sy}_R(X) = \operatorname{Dec}(X \otimes C_R)$. Filtration SS is $E_0^{p,q} = \pi_q(X \otimes R^{\otimes p+1}) \Rightarrow \pi_q X_R^{\wedge}$; this is the *R*-based ANSS.

Synthetic spectra

Fix an \mathbb{A}_{∞} ring R.

The descent complex

Have an augmented cosimplicial \mathbb{A}_{∞} ring:

$$C_R = \mathbb{S} \longrightarrow R \Longrightarrow R \otimes R \Longrightarrow R \otimes R \otimes R \cdots$$

Totalization is $\mathbb{S}_R^{\wedge} = R$ -nilpotent completion of \mathbb{S} .

Definition: synthetic spectra

Set $Sy_R S = Dec(C_R)$; then *R*-synthetic spectra = $Sp_R = LMod_{Sy_R S}$.

R-based Adams-Novikov spectral sequence

Have $\operatorname{Sy}_R \colon \operatorname{Sp} \to \operatorname{Sp}_R$ by $\operatorname{Sy}_R(X) = \operatorname{Dec}(X \otimes C_R)$. Filtration SS is $E_0^{p,q} = \pi_q(X \otimes R^{\otimes p+1}) \Rightarrow \pi_q X_R^{\wedge}$; this is the *R*-based ANSS.

Synthetic spectra

Fix an \mathbb{A}_{∞} ring R.

The descent complex

Have an augmented cosimplicial \mathbb{A}_{∞} ring:

$$C_R = \mathbb{S} \longrightarrow R \Longrightarrow R \otimes R \Longrightarrow R \otimes R \otimes R \cdots$$

Totalization is $\mathbb{S}_R^{\wedge} = R$ -nilpotent completion of \mathbb{S} .

Definition: synthetic spectra

Set $Sy_R S = Dec(C_R)$; then *R*-synthetic spectra = $Sp_R = LMod_{Sy_R S}$.

R-based Adams-Novikov spectral sequence

Have $\operatorname{Sy}_R : \operatorname{Sp} \to \operatorname{Sp}_R$ by $\operatorname{Sy}_R(X) = \operatorname{Dec}(X \otimes C_R)$. Filtration SS is $E_0^{p,q} = \pi_q(X \otimes R^{\otimes p+1}) \Rightarrow \pi_q X_R^{\wedge}$; this is the *R*-based ANSS.

Question

 $\operatorname{Sy}_R \mathbb{S}$ has generic fiber \mathbb{S}_R^{\wedge} , what is special fiber $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma)$?.

Flatness

If R_*R is flat over R_* , then

- (R_*, R_*R) is a Hopf algebroid;
- ② $\pi_*C_R = \text{cobar complex for cohomology of } (R_*, R_*R).$

Thus $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma) = \operatorname{graded}$ cohomology spectrum of (R_*, R_*R) .

Consequence

For R_*R flat, $\mathrm{LMod}_{\mathrm{Sy}_R \mathbb{S} \otimes C(\sigma)}$ is a htpy theory of (R_*, R_*R) -comodules.

Question

Exactly which homotopy theory is $\mathrm{LMod}_{\mathrm{Sy}_R \boxtimes \otimes C(\sigma)}$? (Is $\mathrm{LMod}_{\mathrm{Sy}_R \boxtimes \otimes C(\sigma)} \simeq \mathrm{Stable}_{(R_*,R_*R)}$?)

William Balderrama (UIUC)

Question

 $\operatorname{Sy}_R \mathbb{S}$ has generic fiber \mathbb{S}_R^{\wedge} , what is special fiber $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma)$?.

Flatness

If R_*R is flat over R_* , then

 (R_*, R_*R) is a Hopf algebroid;

2 π_*C_R = cobar complex for cohomology of (R_*, R_*R) .

Thus $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma) = \operatorname{graded}$ cohomology spectrum of (R_*, R_*R) .

Consequence

For R_*R flat, $LMod_{Sy_R S\otimes C(\sigma)}$ is a htpy theory of (R_*, R_*R) -comodules.

Question

Exactly which homotopy theory is $\mathrm{LMod}_{\mathrm{Sy}_R \, \mathbb{S} \otimes C(\sigma)}$? (Is $\mathrm{LMod}_{\mathrm{Sy}_R \, \mathbb{S} \otimes C(\sigma)} \simeq \mathrm{Stable}_{(R_*, R_*R)}$?)

William Balderrama (UIUC)

Synthetic homotopy

Question

 $\operatorname{Sy}_R \mathbb{S}$ has generic fiber \mathbb{S}_R^{\wedge} , what is special fiber $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma)$?.

Flatness

If R_*R is flat over R_* , then

 (R_*, R_*R) is a Hopf algebroid;

2 π_*C_R = cobar complex for cohomology of (R_*, R_*R) .

Thus $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma) = \operatorname{graded}$ cohomology spectrum of (R_*, R_*R) .

Consequence

For R_*R flat, $LMod_{Sy_R S \otimes C(\sigma)}$ is a htpy theory of (R_*, R_*R) -comodules.

Question

Exactly which homotopy theory is $\mathrm{LMod}_{\mathrm{Sy}_R \, \mathbb{S} \otimes C(\sigma)}$? (Is $\mathrm{LMod}_{\mathrm{Sy}_R \, \mathbb{S} \otimes C(\sigma)} \simeq \mathrm{Stable}_{(R_*, R_*R)}$?)

William Balderrama (UIUC)

Question

 $\operatorname{Sy}_R \mathbb{S}$ has generic fiber \mathbb{S}_R^{\wedge} , what is special fiber $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma)$?.

Flatness

If R_*R is flat over R_* , then

 (R_*, R_*R) is a Hopf algebroid;

2 π_*C_R = cobar complex for cohomology of (R_*, R_*R) .

Thus $\operatorname{Sy}_R \mathbb{S} \otimes C(\sigma) = \operatorname{graded}$ cohomology spectrum of (R_*, R_*R) .

Consequence

For R_*R flat, $LMod_{Sy_R S \otimes C(\sigma)}$ is a htpy theory of (R_*, R_*R) -comodules.

Question

Exactly which homotopy theory is $LMod_{Sy_R \otimes C(\sigma)}$? (Is $LMod_{Sy_R \otimes C(\sigma)} \simeq Stable_{(R_*,R_*R)}$?)

William Balderrama (UIUC)

- Have $\mathbb{F}_2[h_0] = 0$ -stem of $\operatorname{Ext}_{\mathcal{A}}(\mathbb{F}_2, \mathbb{F}_2);$
- 2 h_0 detects 2, i.e. hidden extension $2: 1 \rightarrow h_0;$

• get $\pi_{0,*} \operatorname{Sy}_{\mathbb{F}_2} \mathbb{S} = \mathbb{Z}_2[\sigma, h_0]/(\sigma \cdot h_0 = 2)$; this is also $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_2} H\mathbb{Z}$.

Some computations

- Burklund-Hahn-Senger (2019, 2020) compute Toda range $\pi_{\leq 19,*} \operatorname{Sy}_{\mathbb{F}_2} \mathbb{S}$, give applications to manifold geometry, ...;
- ⁽²⁾ Burklund (2020) uses $Sy_{\mathbb{F}_2} \mathbb{S}$ to get last 2-extension in $\pi_{\leq 80} \mathbb{S}$;
- ⁽³⁾ Burklund-Isaksen-Xu (forthcoming) compute lots of $\pi_{*,*}$ Sy_{F2} S.

Remark

Also possible to define *unstable* \mathbb{F}_p -synthetic objects $\operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} X$. Problem: study synthetic *J*-homomorphism $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} SO \to \pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p} \mathbb{S}$

Question

What does chromatic homotopy theory in $Sp_{\mathbb{F}_p}$ look like?

William Balderrama (UIUC)

- Have $\mathbb{F}_2[h_0] = 0$ -stem of $\operatorname{Ext}_{\mathcal{A}}(\mathbb{F}_2, \mathbb{F}_2);$
- 2 h_0 detects 2, i.e. hidden extension $2: 1 \rightarrow h_0;$

• get $\pi_{0,*} \operatorname{Sy}_{\mathbb{F}_2} \mathbb{S} = \mathbb{Z}_2[\sigma, h_0]/(\sigma \cdot h_0 = 2)$; this is also $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_2} H\mathbb{Z}$.

Some computations

- Burklund-Hahn-Senger (2019, 2020) compute Toda range π≤19,* Sy_{F2} S, give applications to manifold geometry, ...;
- **2** Burklund (2020) uses $Sy_{\mathbb{F}_2} \mathbb{S}$ to get last 2-extension in $\pi_{\leq 80} \mathbb{S}$;
- **3** Burklund-Isaksen-Xu (forthcoming) compute lots of $\pi_{*,*}$ Sy_{\mathbb{F}_2} S.

Remark

Also possible to define unstable \mathbb{F}_p -synthetic objects $\operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} X$. Problem: study synthetic *J*-homomorphism $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} SO \to \pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p} S$.

Question

What does chromatic homotopy theory in $Sp_{\mathbb{F}_p}$ look like?

William Balderrama (UIUC)

- Have $\mathbb{F}_2[h_0] = 0$ -stem of $\operatorname{Ext}_{\mathcal{A}}(\mathbb{F}_2, \mathbb{F}_2);$
- 2 h_0 detects 2, i.e. hidden extension $2: 1 \rightarrow h_0;$

• get $\pi_{0,*} \operatorname{Sy}_{\mathbb{F}_2} \mathbb{S} = \mathbb{Z}_2[\sigma, h_0]/(\sigma \cdot h_0 = 2)$; this is also $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_2} H\mathbb{Z}$.

Some computations

- Burklund-Hahn-Senger (2019, 2020) compute Toda range π≤19,* Sy_{F2} S, give applications to manifold geometry, ...;
- **2** Burklund (2020) uses $Sy_{\mathbb{F}_2} \mathbb{S}$ to get last 2-extension in $\pi_{\leq 80} \mathbb{S}$;
- **3** Burklund-Isaksen-Xu (forthcoming) compute lots of $\pi_{*,*}$ Sy_{\mathbb{F}_2} S.

Remark

Also possible to define *unstable* \mathbb{F}_p -synthetic objects $\operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} X$. Problem: study synthetic *J*-homomorphism $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} SO \to \pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p} S$.

Question

What does chromatic homotopy theory in $Sp_{\mathbb{F}_p}$ look like?

William Balderrama (UIUC)

- Have $\mathbb{F}_2[h_0] = 0$ -stem of $\operatorname{Ext}_{\mathcal{A}}(\mathbb{F}_2, \mathbb{F}_2);$
- 2 h_0 detects 2, i.e. hidden extension $2: 1 \rightarrow h_0;$

• get $\pi_{0,*} \operatorname{Sy}_{\mathbb{F}_2} \mathbb{S} = \mathbb{Z}_2[\sigma, h_0]/(\sigma \cdot h_0 = 2)$; this is also $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_2} H\mathbb{Z}$.

Some computations

- Burklund-Hahn-Senger (2019, 2020) compute Toda range π≤19,* Sy_{F2} S, give applications to manifold geometry, ...;
- **2** Burklund (2020) uses $Sy_{\mathbb{F}_2} \mathbb{S}$ to get last 2-extension in $\pi_{\leq 80} \mathbb{S}$;
- **3** Burklund-Isaksen-Xu (forthcoming) compute lots of $\pi_{*,*}$ Sy_{\mathbb{F}_2} S.

Remark

Also possible to define *unstable* \mathbb{F}_p -synthetic objects $\operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} X$. Problem: study synthetic *J*-homomorphism $\pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p}^{\operatorname{un}} SO \to \pi_{*,*} \operatorname{Sy}_{\mathbb{F}_p} S$.

Question

What does chromatic homotopy theory in $Sp_{\mathbb{F}_p}$ look like?

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021

MU-synthetic category Sp_{MU} as a deformation Generic fiber Sp and special fiber $\approx (MU_*, MU_*MU)$ -comodules.

Even objects Let $\operatorname{Sp}_{MU}^{\operatorname{even}} = X$ with X(2n) = X(2n+1); then $\operatorname{Sy}_{MU} \mathbb{S} \in \operatorname{Sp}_{MU}^{\operatorname{even}}$.

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

If we *p*-complete, there is an equivalence of categories $Sy_{MU}^{\text{even}} \simeq Sp_{\mathbb{C}}^{\text{cell}}$.

Application (Gheorghe-Isaksen-Krause-Ricka 2018) $Sy_{MU}(tmf)$ gives \mathbb{C} -motivic tmf with good computational properties.

Is there a good *unstable MU*-synthetic of

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021

MU-synthetic category Sp_{MU} as a deformation

Generic fiber Sp and special fiber $\approx (MU_*, MU_*MU)\text{-comodules}.$

Even objects

Let $\operatorname{Sp}_{MU}^{\operatorname{even}} = X$ with X(2n) = X(2n+1); then $\operatorname{Sy}_{MU} \mathbb{S} \in \operatorname{Sp}_{MU}^{\operatorname{even}}$.

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

If we *p*-complete, there is an equivalence of categories $Sy_{MU}^{\text{even}} \simeq Sp_{\mathbb{C}}^{\text{cell}}$.

Application (Gheorghe-Isaksen-Krause-Ricka 2018)

 $\operatorname{Sy}_{MU}(tmf)$ gives $\mathbb C\text{-motivic }tmf$ with good computational properties.

Side question

Is there a good *unstable MU*-synthetic category?

William Balderrama (UIUC)

Synthetic homotopy

MU-synthetic category Sp_{MU} as a deformation

Generic fiber Sp and special fiber $\approx (MU_*, MU_*MU)\text{-comodules}.$

Even objects

Let $\operatorname{Sp}_{MU}^{\operatorname{even}} = X$ with X(2n) = X(2n+1); then $\operatorname{Sy}_{MU} \mathbb{S} \in \operatorname{Sp}_{MU}^{\operatorname{even}}$.

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

If we *p*-complete, there is an equivalence of categories $Sy_{MU}^{even} \simeq Sp_{\mathbb{C}}^{cell}$.

Application (Gheorghe-Isaksen-Krause-Ricka 2018)

 $\operatorname{Sy}_{MU}(tmf)$ gives $\mathbb C\text{-motivic }tmf$ with good computational properties.

Side question

Is there a good *unstable MU*-synthetic category?

William Balderrama (UIUC)

Synthetic homotopy

MU-synthetic category Sp_{MU} as a deformation

Generic fiber Sp and special fiber $\approx (MU_*, MU_*MU)$ -comodules.

Even objects

Let $\operatorname{Sp}_{MU}^{\operatorname{even}} = X$ with X(2n) = X(2n+1); then $\operatorname{Sy}_{MU} \mathbb{S} \in \operatorname{Sp}_{MU}^{\operatorname{even}}$.

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

If we *p*-complete, there is an equivalence of categories $Sy_{MU}^{even} \simeq Sp_{\mathbb{C}}^{cell}$.

Application (Gheorghe-Isaksen-Krause-Ricka 2018)

 $\operatorname{Sy}_{MU}(tmf)$ gives $\mathbb C\text{-motivic }tmf$ with good computational properties.

Side question

Is there a good *unstable MU*-synthetic category?

William Balderrama (UIUC)

MU-synthetic category Sp_{MU} as a deformation

Generic fiber Sp and special fiber $\approx (MU_*, MU_*MU)$ -comodules.

Even objects

Let $\operatorname{Sp}_{MU}^{\operatorname{even}} = X$ with X(2n) = X(2n+1); then $\operatorname{Sy}_{MU} \mathbb{S} \in \operatorname{Sp}_{MU}^{\operatorname{even}}$.

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

If we *p*-complete, there is an equivalence of categories $Sy_{MU}^{even} \simeq Sp_{\mathbb{C}}^{cell}$.

Application (Gheorghe-Isaksen-Krause-Ricka 2018)

 $\operatorname{Sy}_{MU}(tmf)$ gives $\mathbb C\text{-motivic }tmf$ with good computational properties.

Side question

Is there a good *unstable MU*-synthetic category?

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021

Question

Even if $\operatorname{Sy}_{MU} \mathbb{S}$ may be useful, why bother with Sp_{MU} ?

One answer

General tools for Sp upgrade to tools for Sp_{MU} .

The *MU*-synthetic Steenrod algebra

Have $\operatorname{Sy}_{MU} H\mathbb{F}_2$, giving *MU*-synthetic Steenrod algebra \mathcal{A}_{MU} ; in fact

$$\mathcal{A}_{MU} = \mathcal{A}_{\mathbb{C}}[\sigma]/(\sigma^2 = \tau).$$

This is a deformation of \mathcal{A} , i.e. $\mathcal{A}_{MU}[\sigma^{-1}] = \mathcal{A} \otimes \mathbb{Z}[\sigma^{\pm 1}].$

MU-synthetic Adams SSGet e.g. Adams SS $H^*(\mathcal{A}_{MU}) \Rightarrow \pi_{*,*} \operatorname{Sy}_{MU} \mathbb{S}$.

Question

Even if $\operatorname{Sy}_{MU} \mathbb{S}$ may be useful, why bother with Sp_{MU} ?

One answer

General tools for Sp upgrade to tools for Sp_{MU} .

The MU-synthetic Steenrod algebra

Have $\operatorname{Sy}_{MU} H\mathbb{F}_2$, giving MU-synthetic Steenrod algebra \mathcal{A}_{MU} ; in fact

$$\mathcal{A}_{MU} = \mathcal{A}_{\mathbb{C}}[\sigma]/(\sigma^2 = \tau).$$

This is a deformation of \mathcal{A} , i.e. $\mathcal{A}_{MU}[\sigma^{-1}] = \mathcal{A} \otimes \mathbb{Z}[\sigma^{\pm 1}].$

MU-synthetic Adams SS Get e.g. Adams SS $H^*(\mathcal{A}_{MU}) \Rightarrow \pi_{*,*} \operatorname{Sy}_{MU} \mathbb{S}$.

Question

Even if $\operatorname{Sy}_{MU} \mathbb{S}$ may be useful, why bother with Sp_{MU} ?

One answer

General tools for Sp upgrade to tools for Sp_{MU} .

The MU-synthetic Steenrod algebra

Have $\operatorname{Sy}_{MU} H\mathbb{F}_2$, giving *MU*-synthetic Steenrod algebra \mathcal{A}_{MU} ; in fact

$$\mathcal{A}_{MU} = \mathcal{A}_{\mathbb{C}}[\sigma]/(\sigma^2 = \tau).$$

This is a deformation of \mathcal{A} , i.e. $\mathcal{A}_{MU}[\sigma^{-1}] = \mathcal{A} \otimes \mathbb{Z}[\sigma^{\pm 1}].$

MU-synthetic Adams SS

Get e.g. Adams SS $H^*(\mathcal{A}_{MU}) \Rightarrow \pi_{*,*} \operatorname{Sy}_{MU} \mathbb{S}$.

Question

Even if $\operatorname{Sy}_{MU} \mathbb{S}$ may be useful, why bother with Sp_{MU} ?

One answer

General tools for Sp upgrade to tools for Sp_{MU} .

The MU-synthetic Steenrod algebra

Have $\operatorname{Sy}_{MU} H\mathbb{F}_2$, giving *MU*-synthetic Steenrod algebra \mathcal{A}_{MU} ; in fact

$$\mathcal{A}_{MU} = \mathcal{A}_{\mathbb{C}}[\sigma]/(\sigma^2 = \tau).$$

This is a deformation of \mathcal{A} , i.e. $\mathcal{A}_{MU}[\sigma^{-1}] = \mathcal{A} \otimes \mathbb{Z}[\sigma^{\pm 1}].$

 $MU\mbox{-synthetic}$ Adams SS

Get e.g. Adams SS $H^*(\mathcal{A}_{MU}) \Rightarrow \pi_{*,*} \operatorname{Sy}_{MU} \mathbb{S}$.

The Miller square

Have a square of spectral sequences:

• By construction, bottom is the Adams-Novikov SS;

- ⁽²⁾ Right is a deformation returning classic ASS after inverting σ ;
- 3 Left turns out to be algebraic Novikov SS;
- **Question:** is top the CESS for frobenius extension $\mathcal{A}^{\vee} \to \mathcal{A}^{\vee}$?

Used (Isaksen-Wang-Xu 2020 with $\mathbb{S}_{\mathbb{C}}$) to compute $\pi_*\mathbb{S}$ to 90-stem.

Problem

Compute the 2-parameter deformation " $\pi_{*,*,*} \operatorname{Sy}_{\operatorname{Sy}_{MU} \mathbb{F}_2}(\operatorname{Sy}_{MU} \mathbb{S})$ ". This fully combines Adams filtration and Adams-Novikov filtration.

William Balderrama (UIUC)

The Miller square

Have a square of spectral sequences:

- By construction, bottom is the Adams-Novikov SS;
- **2** Right is a deformation returning classic ASS after inverting σ ;
- **③** Left turns out to be algebraic Novikov SS;
- **9** Question: is top the CESS for frobenius extension $\mathcal{A}^{\vee} \to \mathcal{A}^{\vee}$?

Used (Isaksen-Wang-Xu 2020 with $\mathbb{S}_{\mathbb{C}}$) to compute $\pi_*\mathbb{S}$ to 90-stem.

Problem

Compute the 2-parameter deformation " $\pi_{*,*,*} \operatorname{Sy}_{\operatorname{Sy}_{MU} \mathbb{F}_2}(\operatorname{Sy}_{MU} \mathbb{S})$ ". This fully combines Adams filtration and Adams-Novikov filtration.

William Balderrama (UIUC)

The Miller square

Have a square of spectral sequences:

- By construction, bottom is the Adams-Novikov SS;
- **2** Right is a deformation returning classic ASS after inverting σ ;
- **③** Left turns out to be algebraic Novikov SS;
- **Question:** is top the CESS for frobenius extension $\mathcal{A}^{\vee} \to \mathcal{A}^{\vee}$?

Used (Isaksen-Wang-Xu 2020 with $\mathbb{S}_{\mathbb{C}}$) to compute $\pi_*\mathbb{S}$ to 90-stem.

Problem

Compute the 2-parameter deformation " $\pi_{*,*,*} \operatorname{Sy}_{\operatorname{Sy}_{MU} \mathbb{F}_2}(\operatorname{Sy}_{MU} \mathbb{S})$ ". This fully combines Adams filtration and Adams-Novikov filtration.

William Balderrama (UIUC)

The Miller square

Have a square of spectral sequences:

- By construction, bottom is the Adams-Novikov SS;
- **2** Right is a deformation returning classic ASS after inverting σ ;
- **③** Left turns out to be algebraic Novikov SS;
- **Q**uestion: is top the CESS for frobenius extension $\mathcal{A}^{\vee} \to \mathcal{A}^{\vee}$?

Used (Isaksen-Wang-Xu 2020 with $\mathbb{S}_{\mathbb{C}}$) to compute $\pi_*\mathbb{S}$ to 90-stem.

Problem

Compute the 2-parameter deformation " $\pi_{*,*,*}$ Sy_{Sy_{MU} \mathbb{F}_2}(Sy_{MU} \mathbb{S})". This fully combines Adams filtration and Adams-Novikov filtration.

William Balderrama (UIUC)