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Intro

Big goal
Compute the stable homotopy groups of the sphere spectrum.

Recent breakthrough technique
Compute the stable homotopy groups of other sphere spectra.

Form of the technique

@ These other sphere spectra are often deformations of S; modules
over them give deformations of Sp.

@ Studying these deformations can reveal otherwise hidden
information about classical homotopy theory.

William Balderrama (UIUC) Synthetic homotopy February 8415, 2021 2/35



A square in need of a catchy name

The standard context

B [
SpR _e) 8p02 E— Sp

| o

Spc L Sp

Studying these categories together reveals otherwise obscured insights.

No motivic knowledge is needed for this talk.
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A square in need of a catchy name

The standard context

B [
Sp]R _e) 8p02 E— Sp

| o

Sp(c i) Sp

Studying these categories together reveals otherwise obscured insights.

v

No motivic knowledge is needed for this talk.

Some work (highly non-exhaustive)

O Isaksen-Wang-Xu (2020): use S¢ to compute m,Sy into 90-stem;

@ Belmont-Isaksen (2020) compute 7,Sg, Guillou-Isaksen-? (tbd)
compute m.Sc,; these give e.g. root invariants in ,S;

@ Other contexts: Wilson-Ostveer (2016) compute Fg-motivic stems,
Burklund-(Hahn-Senger,Isaksen-Xu) (2019,tbd): Fo-synthetic m;

@ Add your name: there are many more things to compute.

v
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The deformation viewpoint, or, why is S¢ so useful?

Work at a prime p.

Theorem (Pstragowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element 7 € m,S¢, and:
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Theorem (Pstragowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element 7 € 7,S¢, and:
© Sc/(7) is Eeo, with mSc/(7) = Ext(yu,, mu, mvy(MUs, MU,) and
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Theorem (Pstragowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element 7 € 7,S¢, and:
© Sc/(7) is Eeo, with mSc/(7) = Ext(yu,, mu, mvy(MUs, MU,) and
Mods, /() = even MU,MU-comodules.
© Sc[r~1] is more easily Eo,, with m,Sc[r~1] = 7S ® Z[r*],

MOdSC [r—1] = Sp.
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The deformation viewpoint, or, why is S¢ so useful?

Work at a prime p.

Theorem (Pstragowski 2018, Gheorghe-Wang-Xu 2018, ...)

There is an element 7 € m,S¢, and:
© Sc/(7) is Eeo, with mSc/(7) = Ext(yu,, mu, mvy(MUs, MU,) and
Mods, /() = even MU,MU-comodules.
© Sc[r~1] is more easily Eo,, with m,Sc[r~1] = 7S ® Z[r*],
Mods,.[;-1] = Sp.

@ The 7-inverted 7-BSS m,Sc/(7)[7*!] = m.S[r*!] is the ANSS.
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The deformation viewpoint, or, why is S¢ so useful?

Work at a prime p.

Theorem (Pstragowski 2018, Gheorghe-Wang-Xu 2018, ...)
There is an element 7 € 7,S¢, and:

© Sc/(7) is Eeo, with mSc/(7) = Ext(yu,, mu, mvy(MUs, MU,) and
Mods,/(r) = even MU, MU-comodules.
© Sc[r7!] is more easily Es, with m,Sc[r7!] = m.S ® Z[r*1],
Mods,[-1] = Sp.

@ The 7-inverted 7-BSS m,Sc/(7)[7*!] = m.S[r*!] is the ANSS.

Thus Spgjell is a deformation with generic fiber Sp, algebraic special
fiber, and deformation data = Adams-Novikov data.
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Goal of talk

Idea

For computations of stable stems, the motivic stuff is a red herring;:
Q@ Can directly define a “Sp;y” with 8pas := Mods,,,, =~ Spc;
@ Have deformations Sg and Spg from other R-based Adams SS’s;

@ Generally, deformations come anywhere spectral sequences come.
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Goal of talk

Idea

For computations of stable stems, the motivic stuff is a red herring;:
Q@ Can directly define a “Sp;y” with 8pas := Mods,,,, =~ Spc;
@ Have deformations Sg and Spg from other R-based Adams SS’s;

@ Generally, deformations come anywhere spectral sequences come.

Goal
Explain the filtered object approach to building deformations.

Outline
@ Ordinary filtered algebras as deformations;
@ Spectral sequences and deformations;

@ Various examples.
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Filtered objects: lots of definitions
Fix a category C.

Definition: Filtered objects

The category Cgyy of filtered objects in € is the category of functors
X:(Z,<)—C:

= X(-1) - X(0) - X(1) = ---
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Definition: Filtered objects
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Definition: Day convolution of filtered objects
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Filtered objects: lots of definitions
Fix a category C.

Definition: Filtered objects

The category Cgyy of filtered objects in € is the category of functors
X:(Z,<)—C

= X(-1) - X(0) - X(1) = ---

Definition: Day convolution of filtered objects

For € monoidal with suitable colimits, Cgj; has monoidal product

(X ®Y)(n) = colim X (p) ® Y(q).

p+q<n

Definition: Filtered algebras

Monoids in Cpj are filtered algebras. E.g. when € = Mody, get filtered
k-algebras: A = colim,, A<, with A<, ® A<; = A<pim.

v
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Filtered objects as graded objects

Observation

There is an equivalence of categories
Sy: Fun(Z, LMody) ~ LMody,, lo| =1,
where LMody,) = graded k[o]-modules, given by

(SyM)n - Mgn, (O MSn — MS'I‘L-Fl'

This is sym. monoidal for & commutative (and works more generally).
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Filtered objects as graded objects

Observation

There is an equivalence of categories
Sy: Fun(Z, LMody) ~ LMody,, lo| =1,
where LMody,) = graded k[o]-modules, given by
(Sy M)y = M<y, 0: M<p — Mcpy .

This is sym. monoidal for & commutative (and works more generally).

Filtered algebras as deformations
If A = colim,, A<, is a filtered algebra, then
0 (SyA)/(0) —gr A,
@ (SyA)o7 '] = A Zo*.
Sy A is a deformation with generic fiber A[o*!] and special fiber gr A.

v
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Categorification

Filtered modules as a deformation
The category LModgy 4 fits into a span

LModgr 4 <Z=% LModgy 4 225 LMody ,
g e

exhibiting Sy A-modules as a deformation with generic fiber LMod 4
and special fiber LModg; 4.
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Categorification

Filtered modules as a deformation
The category LModgy 4 fits into a span

LModg 4 «<Z2% LModsy 4 2% LMody ,

exhibiting Sy A-modules as a deformation with generic fiber LMod 4
and special fiber LModg; 4.

Remark

If LMod}!"* = filtered A-modules, span is equivalent to

LMody, 4 «5— LMod™" <y T od, .
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The C-motivic Steenrod algebra

The classic Steenrod algebra
A is the Fy-algebra given by:
@ Generators: Sq” for r > 0, with |Sq"| = —r and Sq° = 1;
@ Relations: Sq** " 1Sq* =3, (T_Z_l)SqQS_l_iqu_r” for r > 0.
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The C-motivic Steenrod algebra

The classic Steenrod algebra
A is the Fy-algebra given by:
@ Generators: Sq” for r > 0, with |Sq"| = —r and Sq° = 1;
@ Relations: Sq** " 1Sq* =3, (r_i_l)qus_l_iSqS_r‘H for r > 0.

The C-motivic Steenrod algebra
Ac is the Fy[7]-algebra, with |7| = (0,—1), given by:
© Generators: Sq” for r > 0, with [Sq”| = —(r, |5]) and Sq° = 1;

O Relations: Sq**""1Sq* =3, (7"_2_1)7'r"Sq25_1_iqu_T+1 for r > 0,
where 7 € {0,1} fixes degrees.
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The C-motivic Steenrod algebra as a deformation
Last slide

Ac is the same as A, except generators have an extra bidegree, and
have a 7 to make relations homogeneous.
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The C-motivic Steenrod algebra as a deformation
Last slide

Ac is the same as A, except generators have an extra bidegree, and
have a 7 to make relations homogeneous.

A filtration
Define the weight filtration on A by

A<n={Sq" : I =(r1,...,7m) with ;| %] <n} C A.

Then with respect to this filtration we have

Sy A = Ac (0 7).
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The C-motivic Steenrod algebra as a deformation
Last slide

Ac is the same as A, except generators have an extra bidegree, and
have a 7 to make relations homogeneous.

A filtration
Define the weight filtration on A by

A<n={Sq" : I =(r1,...,7m) with ;| %] <n} C A.
Then with respect to this filtration we have

Sy A = Ac (o <> 7).

Side questions

@ Is there a more conceptual explanation for this filtration?
(Idea: want it to be related to the Frobenius on A).

@ Similarly Ar = Sy(Ar/(p =1)); is Ar/(p = 1) recognizable?
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SS for the cohomology of a filtered algebra
Fix A = augmented k-algebra (maybe add finiteness), k a field.
Definition: cohomology algebra

The cohomology algebra H*(A) can be defined as:

H*(A) = Ext’y(k, k) = H.C4y, C% = Mody, (I(A)®+™ k).
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SS for the cohomology of a filtered algebra
Fix A = augmented k-algebra (maybe add finiteness), k a field.

Definition: cohomology algebra
The cohomology algebra H*(A) can be defined as:

H*(A) = Ext’y(k, k) = H.C4y, C% = Mody, (I(A)®+™ k).

Now say A = colim,, A<,, filtered by subalgebras.

The filtration spectral sequence
Filtration on A gives filtration Cy = lim,, C4[< m| by

CH[< m] = ker (Cﬁ[é m) = Modk( 3 A<y ®:+ ®AST’“’M)'

ri14-4rpn<m

This satisfies gr Cy = Cg; 4, therefore giving the filtration SS

Fltp = H*(gr A) = H*(A).

v
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SS for the cohomology of a deformation
From A, extract Sy A.

Definition: cohomology algebra

The cohomology algebra H*(Sy A) is defined as

H*(Sy A) = Extg, 4(klo], k[o]) = m_.Extsy a(klo], k[o]).

William Balderrama (UIUC)

Synthetic homotopy

February 8+15, 2021 12 /35



SS for the cohomology of a deformation
From A, extract Sy A.

Definition: cohomology algebra
The cohomology algebra H*(Sy A) is defined as

H*(Sy A) = Extg, 4(klo], k[o]) = m_.Extsy a(klo], k[o]).

The Bockstein spectral sequence
Have a filtration

Extsy a(k[o], k[o]) = lim Extsy a(k[a], k[0]/ (")),

fibers are
Extgy a(klo], k{o"}) ~ ExtsyA/(g)(k, k).

This gives the o-Bockstein spectral sequence

BSSE — H*(Sy A/(0))[o] = H*(Sy A).
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But filtered algebras and deformations are the same
Last two slides

Have the filtration SS and Bockstein SS:

Hltp) = H*(gr A) = H*(A);
BSSEy — H(Sy A/(0))lo] = H*(Sy A).
Remember Sy A/(o) = gr A.
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But filtered algebras and deformations are the same

Last two slides
Have the filtration SS and Bockstein SS:
Hltp) = H*(gr A) = H*(A);
BSSEy = H*(Sy A/(0))[o] = H*(Sy A).

Remember Sy A/(o) = gr A.

Theorem

There is an isomorphism of spectral sequences

BSSET[O,fl] ~ FﬂtEr ® Z[Uil].
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But filtered algebras and deformations are the same

Last two slides
Have the filtration SS and Bockstein SS:

I, = H' (gr A) = H'(A);
B, = H(Sy A/(0))o] = H'(Sy A).

Remember Sy A/(o) = gr A.

Theorem

There is an isomorphism of spectral sequences

BSSET[O,fl] ~ FﬂtEr ® Z[O’il].

Upshot

As BSSE) is free over k[o], inverting o loses no information. Thus the
BSS and Filtration SS carry the same information.

v
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Cohomology of a deformation

Interpretation of theorem

Q As we're over a field, H*(Sy A) = BSSE, as k[o]-modules;
© By construction, BS54, -differentials are those d”(z) = o"y;
Q By BSSdT o Filth, find

H*(Sy A) = ("7, @ Z|o])/ (" - Fd"(z) = 0: z € T 7).

So additively H*(Sy A) may be read off the filtration spectral sequence.

When not over a field, just have more extension problems.
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Cohomology of a deformation

Interpretation of theorem

Q As we're over a field, H*(Sy A) = BSSE, as k[o]-modules;
© By construction, BS54, -differentials are those d”(z) = o"y;
Q By BSSdT o Filth, find

H*(Sy A) = ("7, @ Z|o])/ (" - Fd"(z) = 0: z € T 7).

So additively H*(Sy A) may be read off the filtration spectral sequence.

When not over a field, just have more extension problems.
Cohomology as a deformation

© Have H*(Sy A)[o~ '] = H*(A) ® Z[o*];

@ Have an edge map H*(Sy A)/(0) — F*E, (not iso).
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Where the magic happens

Last slide
Can read additive structure of H*(Sy A) off SS H*(gr A) = H*(A). J

William Balderrama (UIUC) Synthetic homotopy



Where the magic happens

Last slide
Can read additive structure of H*(Sy A) off SS H*(gr A) = H*(A).

Key observation

The multiplicative (and higher) structure of H*(Sy A) tracks higher
structure of the filtration SS, such as extension problems.
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Where the magic happens

Last slide
Can read additive structure of H*(Sy A) off SS H*(gr A) = H*(A).

Key observation

The multiplicative (and higher) structure of H*(Sy A) tracks higher
structure of the filtration SS, such as extension problems.

Examples
Q A relation z-y =0 -2z in H*(Sy A) gives:

@ A relation z-y =0in Fl*E_;
© A relation z -y =z in H*(A);

so describes a hidden multiplicative extension in the filtration SS.

@ Mixed relations (e.g. -y = w + o - z), Massey products, etc. track
more complicated distinctions between "' E_ and H*(A).

v

H*(Sy A) encodes the full process of computing with the filtration SS.
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Application to the Steenrod algebra

Question
If H*(Sy A) just describes the filtration SS, why bother with it? J
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Application to the Steenrod algebra

Question
If H*(Sy A) just describes the filtration SS, why bother with it? J

Recall A = Steenrod algebra, Ac = Sy A for a suitable filtration.
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Application to the Steenrod algebra

Question
If H*(Sy A) just describes the filtration SS, why bother with it?

Recall A = Steenrod algebra, Ac = Sy A for a suitable filtration.
The first Hopf element

Q@ Have hy € H'(A). Have hf =0, so H*(A)[h;'] = 0.

© Lifts to hy € H'(Ac); now hj # 0, instead just 7 - h} = 0.
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Application to the Steenrod algebra

Question
If H*(Sy A) just describes the filtration SS, why bother with it?

Recall A = Steenrod algebra, Ac = Sy A for a suitable filtration.
The first Hopf element

Q@ Have hy € H'(A). Have hf =0, so H*(A)[h;'] = 0.

© Lifts to hy € H'(Ac); now hj # 0, instead just 7 - h} = 0.

Theorem (Guillou-Isaksen 2014)
H*(Ac)[hT!] = Fo[htt, vl vn i > 2]
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Application to the Steenrod algebra

Question
If H*(Sy A) just describes the filtration SS, why bother with it?

Recall A = Steenrod algebra, Ac = Sy A for a suitable filtration.

The first Hopf element
Q@ Have hy € H'(A). Have hf =0, so H*(A)[h;'] = 0.
© Lifts to hy € H'(Ac); now hj # 0, instead just 7 - h} = 0.

Theorem (Guillou-Isaksen 2014)
H*(Ac)[hT!] = Fo[htt, vl vn i > 2]

Corollary

Can detect various relations in H*(A) using the zigzag

H*(Ac)lhi'] « H*(Ac) — H*(A).

William Balderrama (UIUC) Synthetic homotopy February 8415, 2021
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On beyond ordinary algebra

Observation
@ Went from filtration on A to filtration on Cy (or Ext(k, k));
@ It’s the homotopical filtration that did all the work.

So we should work with filtered spectra.
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On beyond ordinary algebra

Observation

@ Went from filtration on A to filtration on Cy (or Ext(k, k));
@ It’s the homotopical filtration that did all the work.

So we should work with filtered spectra.

Filtered spectra: quick facts
O (Lurie) Symmetric monoidal equivalence Sy : Sprii; =~ Mods|s](Spgr)
Q@ C(o") =So]/(c") is E, with C(o) = unit of 8pgr;
@ Given X = colim,, X (n) filtered spectrum, have

(X/(0™))(p) = (X ® C(0"))(p) = Cof (X(p —n) = X(p))-

This, and what follows, generalizes to other stable categories.
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Review: spectral sequences

Notation for X € Sppyi
Write X (p,q) = Cof(X (p) = X(q)), with X (c0) = colim X. J
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Review: spectral sequences
Notation for X € Sppi
Write X (p,q) = Cof(X (p) = X(q)), with X (c0) = colim X.

Theorem

There is a spectral sequence

1 q . .
E, .= g X (p—1,p) = mgX(0), ara: E;;q = E;_W_l,
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Review: spectral sequences
Notation for X € Sppi
Write X (p,q) = Cof(X (p) = X(q)), with X (c0) = colim X.

Theorem

There is a spectral sequence

E;q = Tqu(p - 17p) = WqX(OO)7 dg,q: E;,q — E;—nq—l;

Explanation, or, what is a spectral sequence?
@ Each (E",d") is a chain complex, i.e. d" o d" = 0;
@ Isomorphisms E™! = H,(E",d") = Z"/B" (but d"*! is extra).
So each E™t™ is a subquotient of E". In good cases (i.p. X(—o0) = 0):
@ With E* = (N, Z2")/(U,B") and FP = Im(m, X (p) = 74X (c0)),

E®° = grm,X(oc0).

All spectral sequences will be considered convergent.
William Balderrama (UIUC)
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Review: construction of the spectral sequence

Construction
For p < g < r, have cofibering

X(p, q) — X(p771) — X(q,T)
If we define
By, =Im(rgX(p —r,p) = mX(p—L,p+7—1)),

we get d": B, . — E,_, .1 induced by a boundary map.
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Review: construction of the spectral sequence

Construction
For p < g < r, have cofibering

X(p, q) — X(p,?“) — X(q,T)
If we define
B =1Im(mgX(p—1,p) = 7 X(p—1,p+r—1)),

we get d": B — Ej . induced by a boundary map.

Example

Have E;,q =X (p—1,p), and d' induced by boundary in X.
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Review: construction of the spectral sequence

Construction
For p < g < r, have cofibering

X(p,q) = X(p,r) = X(q,7).
If we define
B, =Im(m X (p—7,p) = 1 X(p—1,p+r—1)),
1 induced by a boundary map.

wegetd :E  —E) ..

Example

Have E;,q =X (p—1,p), and d' induced by boundary in X.

Terminology

The collection of 7, X (p, q) and maps is a Cartan-FEilenberg system.
Can show E™t! = H,(E",d"), so get a spectral sequence.

v
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Review: detection

Definitions: filtration and detection
x € mgX (00) is in filtration p if there is a lift

~ e 51
— X(p—1r) — — X(p) — — X (0)
|
X(p—r,p)

Xp-Lp+r—1)

If z projects to T € Ey , C 7y X(p — 1,p + 7 — 1) nonzero, one says that
x is detected by .

v
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Review: hidden extensions

“Definition”
A hidden additive extension refers to situations like:
Q z € myX(o00) with 2z # 0;
@ =z is detected by T € Egﬁz, and 2z = 0.
In general hidden extensions are the failure of “E,, = m, X (c0)”.
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Review: hidden extensions

“Definition”
A hidden additive extension refers to situations like:
Q z € myX(o00) with 2z # 0;
@ =z is detected by T € Egﬁz, and 2z = 0.
In general hidden extensions are the failure of “E,, = m, X (c0)”.

Closer look
Fix x as above. Then:

Q@ As z is in filtration p, lift to Z: ST — X(p);

Q As 2z # 0, have 2% # 0;

@ As 2z =0 in E*, have lift 2z: S? — X (p — 1);
that is 2z lifts higher through the tower than .

William Balderrama (UIUC) Synthetic homotopy February 8415, 2021
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Homotopy groups of a filtered spectrum
Definition

The bigraded homotopy groups of X € Sppjy are my X = 7,X(c).
Thus 75+ X is a Z[o]-module, |o| = (0, 1).
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Homotopy groups of a filtered spectrum
Definition

The bigraded homotopy groups of X € Sppjy are my X = 7,X(c).
Thus 75+ X is a Z[o]-module, |o| = (0, 1).

Example

Filtration on A gives filtration on C4 with 7, ,C4 = H*(Sy A).
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Homotopy groups of a filtered spectrum
Definition

The bigraded homotopy groups of X € Sppjy are my X = 7,X(c).
Thus 75+ X is a Z[o]-module, |o| = (0, 1).

Example

Filtration on A gives filtration on C4 with 7, ,C4 = H*(Sy A).

As a deformation
@ Have 7, . X [0} = m X (c0) ® Z[oF];
@ Have edge map (7, X)/(0) = EX*.
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Homotopy groups of a filtered spectrum

Definition

The bigraded homotopy groups of X € Sppjy are my X = 7,X(c).

Thus 75+ X is a Z[o]-module, |o| = (0, 1).

Example

Filtration on A gives filtration on C4 with 7, ,C4 = H*(Sy A).

As a deformation
@ Have 7, . X [0} = m X (c0) ® Z[oF];
@ Have edge map (7, X)/(0) = EX*.

The hidden extension revisited
Q@ = € myX(o0) in filtration p: lifts to T € 7y, X;
Q If 27 = 0 in E*: have o-divisibility 27 = o - 2.
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Homotopy groups of a filtered spectrum
Definition

The bigraded homotopy groups of X € Sppjy are my X = 7,X(c).
Thus 75+ X is a Z[o]-module, |o| = (0, 1).

Example
Filtration on A gives filtration on C4 with 7, ,C4 = H*(Sy A).

As a deformation
@ Have 7, . X [0} = m X (c0) ® Z[oF];
@ Have edge map (7, X)/(0) = EX*.

The hidden extension revisited
Q@ = € myX(o0) in filtration p: lifts to T € 7y, X;
Q If 27 = 0 in E*: have o-divisibility 27 = o - 2.

In general 7, X records the computation of the spectral sequence

7y g X = 1, X (00), e.g. o"-torsion corresponds to d,-differentials.
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The trigraded spectral sequence

Filtrations
@ X(o0) = colim, X (p) gave spectral sequence for m, X (c0);
Q@ X(n) = colim,<, X (p) gives spectral sequence for m, X (n).
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The trigraded spectral sequence

Filtrations

@ X(o0) = colim, X (p) gave spectral sequence for m, X (c0);
Q@ X(n) = colim,<, X (p) gives spectral sequence for m, X (n).

Description

The SS for m,X (n) looks like that for m, X (c0), cut off at filtration n:
@ Stuff in filtration > n is no longer present;
@ If d,(x) in filtration > n for X (oc0), then z is p.c. for X (n).
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The trigraded spectral sequence
Filtrations

@ X(o0) = colim, X (p) gave spectral sequence for m, X (c0);
Q@ X(n) = colim,<, X (p) gives spectral sequence for m, X (n).

Description
The SS for m,X (n) looks like that for m, X (c0), cut off at filtration n:
@ Stuff in filtration > n is no longer present;

@ If d,(x) in filtration > n for X (oc0), then z is p.c. for X (n).

Theorem (putting it all together)
Trigraded spectral sequence Ef’c’f = (Mse—f (X)) {0} = 75 . X.
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The trigraded spectral sequence

Filtrations
@ X(oo) = colim, X (p) gave spectral sequence for m, X (c0);
Q@ X(n) = colim,<, X (p) gives spectral sequence for m, X (n).

Description

The SS for m,X (n) looks like that for m, X (c0), cut off at filtration n:

@ Stuff in filtration > n is no longer present;
@ If d,(x) in filtration > n for X (oc0), then z is p.c. for X (n).

Theorem (putting it all together)

Trigraded spectral sequence Ef’c’f = (Mse—f (X)) {0} = 75 . X.

Proof

This is just the o-Bockstein spectral sequence

E}Po" = s, X/(0)[0] = 75 X.
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Deformations of stable homotopy theories
Filtered ring spectra as deformations
For R € Sprir a filtered A, ring, have
@ R(o0) an ordinary A, ring spectrum;
Q@ grR=R®C(C(0) a graded Ay ring spectrum.
Get deformation with generic fiber R(oo) and special fiber gr R
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Deformations of stable homotopy theories
Filtered ring spectra as deformations
For R € Sprir a filtered A, ring, have
@ R(o0) an ordinary A, ring spectrum;
Q@ grR=R®C(C(0) a graded Ay ring spectrum.
Get deformation with generic fiber R(co) and special fiber gr R.

Filtered modules as a deformation
Have filtered module category LModg, with span

LModpec(o) <=2 LModr 225 LModg(e) :
RC(0) (o0)

A deformation, generic fiber LModp() and special fiber LModggc(qo)-
Deformation theory governed by “higher structure” of filtration SS

Tq 8 R = myR(00).

Can generalize to other settings.
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The trivial deformation

Observation
Sprilt = Modg,] itelf has generic fiber Sp and special fiber Spg,. J
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The trivial deformation

Observation
Sprit = Modg) itelf has generic fiber 8p and special fiber Spg,.

The generalized Mahowald square
For X € Sppyy, if each H, X (p — 1) C H, X (p) (say H = HIF3), get

Algebrai
Exta(Hs,» gr X)[o] == Exta(H..X)

HASS HASS

Bockstei
T ng[O_] ockstein SS 7T*7*X
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The trivial deformation

Observation
Sprit = Modg) itelf has generic fiber 8p and special fiber Spg,.

The generalized Mahowald square
For X € Sppyy, if each H, X (p — 1) C H, X (p) (say H = HIF3), get

Algebrai
Exta(Hs,» gr X)[o] == Exta(H..X)

HASS ﬂASS

Bockstei
T ng[O_] ockstein SS 7T*7*X

The diagonal: the filtration-complete Adams SS
Where Hrpy; := H ® C(0), have Ay = Ale]/(€?) and

Ey = Extg,, (Hyxgr X) = m . X.

When the Mahowald square is defined, have Fy = Ext4(H, gr X)[o].
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The t-structure deformation

Whitehead towers
There is a lax symmetric monoidal functor

W : 8p — Spriit, W(X)p = m>nX.
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The t-structure deformation
Whitehead towers
There is a lax symmetric monoidal functor
W : 8p — Spriit, W(X)p = m>nX.
Definition: synthetic R-modules

Given A ring R, get Syngp = LModyy gy = synthetic R-modules.
Deformation: generic fiber LModg and special fiber LModg, = D(R.).

v
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The t-structure deformation
Whitehead towers

There is a lax symmetric monoidal functor

W: 8p — 8pril, W(X)p = >nX.

Definition: synthetic R-modules

Given A ring R, get Syngp = LModyy gy = synthetic R-modules.
Deformation: generic fiber LModg and special fiber LModg, = D(R.).

v

Example application

Have functor W: LModgr — Syng. For R commutative:

QO (W(M) @w(r) W(N))[e~ ']~ M ®r N € Modg;

@ gr strong sym. monoidal, so gr(W (M) @y (ry W(NV)) ~ M, ®H;z* N,.
Thus filtration SS = Kiinneth spectral sequence.

v
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The t-structure deformation

Whitehead towers
There is a lax symmetric monoidal functor

W: 8p — 8pril, W(X)y = m>nX.

Definition: synthetic R-modules

Given A ring R, get Syngp = LModyy gy = synthetic R-modules.
Deformation: generic fiber LModg and special fiber LModg, = D(R.).

v

Example application
Have functor W: LModr — Syng. For R commutative:

Q@ (W(M)®wr WNN))o™']~MerN € Modg;

@ gr strong sym. monoidal, so gr(W (M) @y (ry W(NV)) ~ M, ®Hé* N,.
Thus filtration SS = Kiinneth spectral sequence.

v

Remark: a more abstract construction

Can show Synp = Sp-valued modules of algebraic theory LMod%ee.

v
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Filtered model of Borel Cy-equivariant homotopy
Work with everything 2-complete.

Definition: the root sphere
Let Sgpoot = filtered spectrum with Sgeet(n) = F(P,,S); write p = 0. J
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Filtered model of Borel Cy-equivariant homotopy
Work with everything 2-complete.

Definition: the root sphere

Let Sgpoot = filtered spectrum with Sgeet(n) = F(P,,S); write p = 0.

Facts

Q SRoot is a filtered Eo ring spectrum (7), so get Sproot := Modsy,,,,;

© Have Sgeot/(p) = S[7T!], and Lin’s theorem: Sgeot[p™'] = S[p*'];
@ Rmk: Cy Segal conj. (Lin): TeyerScy, = Ts,cSRoot-
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Filtered model of Borel Cy-equivariant homotopy
Work with everything 2-complete.

Definition: the root sphere

Let Sgpoot = filtered spectrum with Sgeet(n) = F(P,,S); write p = 0.

Facts

Q SRoot is a filtered Eo ring spectrum (7), so get Sproot := Modsy,,,,;

© Have Sgeot/(p) = S[7T!], and Lin’s theorem: Sgeot[p™'] = S[p*'];
@ Rmk: Cy Segal conj. (Lin): TeyerScy, = Ts,cSRoot-

Reinterpretation

There is an equivalence of categories

v: Fun(BCs, 8p) ~ Sppbet’,  w(X)(n) = F(S™"7, X',
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Filtered model of Borel Cy-equivariant homotopy
Work with everything 2-complete.

Definition: the root sphere

Let Sgpoot = filtered spectrum with Sgeet(n) = F(P,,S); write p = 0.

Facts

Q SRoot is a filtered Eo ring spectrum (7), so get Sproot := Modsy,,,,;
© Have Sgeot/(p) = S[7T!], and Lin’s theorem: Sgeot[p™'] = S[p*'];

@ Rmk: Cy Segal conj. (Lin): TeyerScy, = Ts,cSRoot-

v

Reinterpretation

There is an equivalence of categories

v: Fun(BCs, 8p) ~ Sppbet’,  w(X)(n) = F(S™"7, X',

Question

What does this look like for other groups?
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Borel Cs-equivariant homotopy as a deformation
Root invariants

Have filt SS = Atiyah-Hirezbruch SS 7, gr Spoot = W*S[Tﬂ] = m.S.
The root invariants R(a) of o € m,S are those 5 € 7S that detect a.
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Borel Cs-equivariant homotopy as a deformation
Root invariants

Have filt SS = Atiyah-Hirezbruch SS 7, gr Spoot = W*S[Tﬂ] = m.S.
The root invariants R(a) of o € m,S are those 5 € 7S that detect a.

Interpretation

v

Borel Cs-spectra are a deformation with:
@ Generic fiber Sp, realized by Tate constr. Fun(BCy, 8p) — Sp;

@ Special fiber Sp, realized by the forgetful map Fun(BCs,8p) — Sp;
@ Deformation data governed by root invariant data.
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Borel Cs-equivariant homotopy as a deformation
Root invariants

Have filt SS = Atiyah-Hirezbruch SS 7, gr Sroot = T+S[7*!] = .S.
The root invariants R(a) of a € .S are those § € m,S that detect a.

v

Interpretation

Borel Cs-spectra are a deformation with:
@ Generic fiber Sp, realized by Tate constr. Fun(BCy, 8p) — Sp;
@ Special fiber 8p, realized by the forgetful map Fun(BCs, Sp) — Sp;
@ Deformation data governed by root invariant data.

Rmk: the Borel Steenrod algebra

Have ARroot = Sy(H}(P>%.) @ A) with H(ARoot) = Syroot (F(A)), and

p-BSS

H* (‘A) [Til] [p] Algebraic AHSS

= Borel ASS
e —— .
H (AROOt) Levelwise ASS W*’*SROOt

Outside 8pRroot, get filt-complete ASS H*(A)[r*!, p] = T xSRoot -

v
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Décalage

Spectral sequence of a cosimplicial spectrum
Given X : A — Sp, there is a spectral sequence

Ey = H N(m,X) = m, Tot X,

where N = chain complex of cosimplicial group m,X.
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Décalage

Spectral sequence of a cosimplicial spectrum

Given X : A — Sp, there is a spectral sequence
Ey = H.N(mX) = 7, Tot X,

where N = chain complex of cosimplicial group m,X.

Fact

There is lax symmetric monoidal Dec: Fun(A, 8p) — Sppiix such that
Q colim Dec X =~ Tot X;
@ Filtration SS E; = cosimplicial SS Fj.
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Décalage

Spectral sequence of a cosimplicial spectrum
Given X : A — Sp, there is a spectral sequence

Ey = H N(m,X) = m, Tot X,

where N = chain complex of cosimplicial group m,X.

Fact

There is lax symmetric monoidal Dec: Fun(A, 8p) — Sppiix such that
Q colim Dec X =~ Tot X;
@ Filtration SS E; = cosimplicial SS Fj.

Construction
Have (Dec X)(n) = Tot(m — 7>, X (m)).
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Synthetic spectra
Fix an A ring R.

The descent complex

Have an augmented cosimplicial A, ring:

ChR=S—— R—3R®R—= RQRQR---

Totalization is S% = R-nilpotent completion of S.
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Synthetic spectra
Fix an A ring R.

The descent complex

Have an augmented cosimplicial A, ring:

ChR=S—— R—3R®R—= RQRQR---

Totalization is S% = R-nilpotent completion of S.

Definition: synthetic spectra

Set Syg S = Dec(CR); then R-synthetic spectra = 8pr = LModsy,s.
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Synthetic spectra
Fix an A ring R.

The descent complex

Have an augmented cosimplicial A, ring:

ChR=S—— R—3R®R—= RQRQR---

Totalization is S% = R-nilpotent completion of S.

Definition: synthetic spectra
Set Syg S = Dec(CR); then R-synthetic spectra = 8pr = LModsy,s.

R-based Adams-Novikov spectral sequence

Have Syp: 8p — Spr by Syp(X) = Dec(X ® Cg). Filtration SS is
EP? = my(X ® R®PTY) = 71, X}; this is the R-based ANSS.
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Synthetic spectra (cont.)

Question
Syr S has generic fiber S%, what is special fiber Syp S ® C(0)?. J
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Synthetic spectra (cont.)
Question

Syg S has generic fiber S, what is special fiber Syp S ® C(0)?.
R R R

Flatness
If R.R is flat over R,, then
O (R., R.R) is a Hopf algebroid;
@ 7.Cgr = cobar complex for cohomology of (R, R.R).
Thus Syp S ® C(o) = graded cohomology spectrum of (R, R.R).
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Synthetic spectra (cont.)
Question

Syg S has generic fiber S, what is special fiber Syp S ® C(0)?.
R R R

Flatness
If R.R is flat over R,, then
O (R., R.R) is a Hopf algebroid;
@ 7.Cgr = cobar complex for cohomology of (R, R.R).
Thus Syp S ® C(o) = graded cohomology spectrum of (R, R.R).

Consequence

For R.R flat, LModsy , sec(o) is @ htpy theory of (R, R.R)-comodules.

v
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Synthetic spectra (cont.)

Question

Syg S has generic fiber S, what is special fiber Syp S ® C(0)?.
R R R

Flatness
If R.R is flat over R,, then
O (R., R.R) is a Hopf algebroid;
@ 7.Cgr = cobar complex for cohomology of (R, R.R).
Thus Syp S ® C(o) = graded cohomology spectrum of (R, R.R).

Consequence
For R.R flat, LModsy , sec(o) is @ htpy theory of (R, R.R)-comodules.

v

Question

Exactly which homotopy theory is LModsy , sec(0)?
(Is LMOdSyR S®C(o) = Stable(R*,R*R)?)

v
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Fo-synthetic spectra Spr,
Example: 0-stem
@ Have Fy[ho] = 0-stem of Ext4(Fa, Fa);
@ hg detects 2, i.e. hidden extension 2: 1 — hg;
Q get 7o« Syp, S = Zs[o, hol/(0 - ho = 2); this is also 74 « Sy, HZ.
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Fo-synthetic spectra Spr,
Example: 0-stem
@ Have Fy[ho] = 0-stem of Ext4(Fa, Fa);
@ hg detects 2, i.e. hidden extension 2: 1 — hg;
Q get 7o« Syp, S = Zs[o, hol/(0 - ho = 2); this is also 74 « Sy, HZ.

v

Some computations

@ Burklund-Hahn-Senger (2019, 2020) compute Toda range
<19+ SYF, S, give applications to manifold geometry, ...;

© Burklund (2020) uses Sy, S to get last 2-extension in m<goS;

@ Burklund-Isaksen-Xu (forthcoming) compute lots of m, . Sy]F2 S.
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Fo-synthetic spectra Spr,
Example: 0-stem
@ Have Fy[ho] = 0-stem of Ext4(Fa, Fa);
@ hg detects 2, i.e. hidden extension 2: 1 — hg;
Q get 7o« Syp, S = Zs[o, hol/(0 - ho = 2); this is also 74 « Sy, HZ.

Some computations

@ Burklund-Hahn-Senger (2019, 2020) compute Toda range
<19+ SYF, S, give applications to manifold geometry, ...;

© Burklund (2020) uses Sy, S to get last 2-extension in m<goS;
@ Burklund-Isaksen-Xu (forthcoming) compute lots of 7, . Sy, S.

Remark

Also possible to define unstable F),-synthetic objects Syﬁg
Problem: study synthetic J-homomorphism , . Sy}&? SO — Ty« SyF, S.

v
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Fo-synthetic spectra Spr,
Example: 0-stem
@ Have Fy[ho] = 0-stem of Ext4(Fa, Fa);
@ hg detects 2, i.e. hidden extension 2: 1 — hg;
Q get 7o« Syp, S = Zs[o, hol/(0 - ho = 2); this is also 74 « Sy, HZ.

Some computations

@ Burklund-Hahn-Senger (2019, 2020) compute Toda range
<19+ SYF, S, give applications to manifold geometry, ...;

© Burklund (2020) uses Sy, S to get last 2-extension in m<goS;
@ Burklund-Isaksen-Xu (forthcoming) compute lots of 7, . Sy, S.

Remark

Also possible to define unstable F),-synthetic objects Syﬁg
Problem: study synthetic J-homomorphism , . Syﬁ? SO — Ty« SyF, S.

v

Question

What does chromatic homotopy theory in Spr, look like?
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MU-synthetic spectra and C-motivic homotopy

MU-synthetic category Spysy as a deformation
Generic fiber 8p and special fiber ~ (MU,, MU, MU )-comodules. J
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MU-synthetic spectra and C-motivic homotopy

MU-synthetic category Spysp as a deformation
Generic fiber 8p and special fiber ~ (MU,, MU, MU )-comodules.

Even objects
Let 8pyyt = X with X(2n) = X(2n + 1); then Sy, S € 8p§yr-
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MU-synthetic spectra and C-motivic homotopy

MU-synthetic category Spysp as a deformation
Generic fiber 8p and special fiber ~ (MU,, MU, MU )-comodules.

Even objects
Let 8pSjst = X with X (2n) = X (2n + 1); then Sy, S € Spiie-

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

even

If we p-complete, there is an equivalence of categories Syji7 ~ Spg

cell
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MU-synthetic spectra and C-motivic homotopy

MU-synthetic category Spysp as a deformation
Generic fiber 8p and special fiber ~ (MU,, MU, MU )-comodules.

Even objects
Let 8pSjst = X with X (2n) = X (2n + 1); then Sy, S € Spiie-

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

even cell

If we p-complete, there is an equivalence of categories Syji7 ~ Spg

Application (Gheorghe-Isaksen-Krause-Ricka 2018)

Sy yu(tmf) gives C-motivic tmf with good computational properties.
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MU-synthetic spectra and C-motivic homotopy

MU-synthetic category Spysp as a deformation
Generic fiber 8p and special fiber ~ (MU,, MU, MU )-comodules.

Even objects
Let 8pSjst = X with X (2n) = X (2n + 1); then Sy, S € Spiie-

Theorem (Gheorghe-Isaksen-Krause-Ricka 2018)

If we p-complete, there is an equivalence of categories Sy Ce”

even

Application (Gheorghe-Isaksen-Krause-Ricka 2018)

Sy yu(tmf) gives C-motivic tmf with good computational properties.

Side question
Is there a good unstable MU-synthetic category?

v
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MU-synthetic spectra and the Adams SS

Question J

Even if Sy,;i7 S may be useful, why bother with Spasr?
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MU-synthetic spectra and the Adams SS

Question

Even if Sy,;i7 S may be useful, why bother with Spasr?

One answer
General tools for Sp upgrade to tools for Spasr.
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MU-synthetic spectra and the Adams SS

Question

Even if Sy,;;; S may be useful, why bother with Spasis?

One answer
General tools for Sp upgrade to tools for Spasr.

The MU-synthetic Steenrod algebra
Have Sy, HF2, giving M U-synthetic Steenrod algebra A /y; in fact

Amu = Aclo]/(0® = 7).

This is a deformation of A, i.e. Ayplo™!] = A® Z[oT!].
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MU-synthetic spectra and the Adams SS

Question
Even if Sy,;;; S may be useful, why bother with Spasis?

One answer
General tools for Sp upgrade to tools for Spasr.

The MU-synthetic Steenrod algebra
Have Sy, HF2, giving M U-synthetic Steenrod algebra A /y; in fact

Amu = Aclo]/(0® = 7).

This is a deformation of A, i.e. Ayplo™!] = A® Z[oT!].

MU-synthetic Adams SS
Get e.g. Adams SS H*(Anu) = Tex Syyu S.
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Utility of the MU-synthetic Adams SS
The Miller square

Have a square of spectral sequences:
H*(Apu/(0)[o] 225 H*(Anp)
ﬂSyMU -ASS Sy o -ASS -

e Sy au S/ (0)[o] Z2B 1, Sypu S

William Balderrama (UIUC) Synthetic homotopy February 8415, 2021

35/35



Utility of the MU-synthetic Adams SS
The Miller square

Have a square of spectral sequences:
H*(Apu/(0)[o] 225 H*(Anp)
ﬂSy i -ASS Sy o -ASS -

™ Synu S/(0)[o] = Symu S

@ By construction, bottom is the Adams-Novikov SS;

@ Right is a deformation returning classic ASS after inverting o;
@ Left turns out to be algebraic Novikov SS;

@ Question: is top the CESS for frobenius extension AY — AY?
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Utility of the MU-synthetic Adams SS
The Miller square

Have a square of spectral sequences:
H*(Amu/(0))lo] Z25 H*(Auy)
ﬂSy o -ASS Sy o -ASS -
s Sy pu S/ (0)[o] =2 Symu S
@ By construction, bottom is the Adams-Novikov SS;
@ Right is a deformation returning classic ASS after inverting o;

@ Left turns out to be algebraic Novikov SS;
@ Question: is top the CESS for frobenius extension AY — AY?

Used (Isaksen-Wang-Xu 2020 with S¢) to compute 7S to 90-stem.
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Utility of the MU-synthetic Adams SS
The Miller square

Have a square of spectral sequences:
H*(Amu/(0))lo] Z25 H*(Auy)
ﬂSy o -ASS Sy o -ASS -
s Sy pu S/ (0)[o] =2 Symu S
@ By construction, bottom is the Adams-Novikov SS;
@ Right is a deformation returning classic ASS after inverting o;

@ Left turns out to be algebraic Novikov SS;
@ Question: is top the CESS for frobenius extension AY — AY?

Used (Isaksen-Wang-Xu 2020 with S¢) to compute 7S to 90-stem.

Problem

Compute the 2-parameter deformation “m. .« Sysy, ., (Syarv S)™
This fully combines Adams filtration and Adams-Novikov filtration.
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